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Abstract. In this paper, we generalize the point integral method proposed in [25,39] to
solve the general elliptic PDEs with variable coefficients and corresponding eigenval-
ue problems with Neumann, Robin and Dirichlet boundary conditions on point cloud.
The main idea is using integral equations to approximate the original PDEs. The in-
tegral equations are easy to discretize on the point cloud. The truncation error of the
integral approximation is analyzed. Numerical examples are presented to demonstrate
that PIM is an effective method to solve the elliptic PDEs with smooth coefficients on
point cloud.
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1 Introduction

In the past decades, data play more and more important role in sciences and engineer-
ings, even in our daily life. Among varieties of models in data analysis, manifold based
model attracts more and more attentions [3,6–9,16,18,20,21,27–29,31,32,34–36,40]. In the
manifold model, data or images are associated to a smooth manifold embedded in a high
dimensional Euclidean space. PDEs on the manifold, particularly the Laplace-Beltrami
equation, give us powerful tools to reveal the underlying structure of the manifold. Usu-
ally, in data analysis and image processing, the manifold is represented as a collection of
unstructured points in high dimensional space, which is refereed as point cloud. To solve
PDEs in point cloud, the traditional methods for PDEs on Euclidean space may not work.

Among varieties of manifolds, 2D surfaces embedded in R3 play very important role
in many scientific and engineering problems, including material science [5,13], fluid flow
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[15, 17], biology and biophysics [1, 2, 14, 33]. Many numerical methods to solve surface
PDEs have been developed in the past decades, such as surface finite element method
[12], level set method [4,41], grid based particle method [22,23] and closest point method
[30, 37]. Finite element method has very good theoretical properties. It is shown that
FEM converges quadratically in L2 norm and linearly in H1 norm for solving the Poisson
equations [11]. However, to apply FEM, global mesh is needed which is not easy to
generate especially in high dimensional space. The other methods, including level set
method, grid based particle method, closest point method, also need extra information.
These information is not easy to obtain from point cloud, especially in high dimensional
space.

Due to the development of data and imaging science, solving PDEs on high dimen-
sional unstructured point cloud absorb more and more attentions. Many researchers
from different areas are trying to find alternative methods to discretize differential oper-
ators on high dimensional point cloud. Liang et al. proposed a method based on local
least square approximations of the manifold [26]. Later, Lai et al. proposed the local
mesh method to approximate differential operators on point cloud [19]. Despite of lack
of proof, moving least square and local mesh based methods achieve high order accuracy
and have achieved great successes in many applications.

The other numerical method in point cloud for Poisson equation is the point integral
method (PIM) [25, 39]. The main idea of the point integral method is to approximate the
Poisson equation via an integral equation:

−
∫
M

∆Mu(y)R̄t(x,y)dy≈ 1
t

∫
M

Rt(x,y)(u(x)−u(y))dy (1.1)

−2
∫

∂M
R̄t(x,y)

∂u
∂n

(y)dτy,

where n is the out normal of ∂M, M is a smooth d-dimensional manifold embedded in
RN , ∂M is the boundary of M. Rt(x,y) and R̄t(x,y) are kernel functions given as follows

Rt(x,y)=CtR
(
|x−y|2

4t

)
, R̄t(x,y)=CtR̄

(
|x−y|2

4t

)
where Ct =

1
(4πt)d/2 is the normalizing factor. R ∈ C2(R+) be a positive function that is

integrable over [0,+∞),

R̄(r)=
∫ +∞

r
R(s)ds. (1.2)

∆M is the Laplace-Beltrami operator (LBO) on M. The integral equation is much easier
to discretize on point clouds with proper quadrature rule.

In this paper, we generalize PIM to solve general elliptic equations on manifold M.
We assume that M∈ C2 is a compact d-dimensional manifold isometrically embedded
in RN with the standard Euclidean metric and d≤N. If M has boundary, the boundary,
∂M is also a C2 smooth manifold.
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Let X : V ⊂Rd →M⊂RN be a local parametrization of M and θ∈V. For any differ-
entiable function f :M→R, let F(θ)= f (X(θ)), define

Dk f (X(θ))=
m

∑
i,j=1

gij(θ)
∂Xk

∂θi
(θ)

∂F
∂θj

(θ), k=1,··· ,N. (1.3)

where (gij)i,j=1,···,d =G−1 and G(θ)= (gij)i,j=1,···,d is the first fundamental form which is
defined by

gij(θ)=
N

∑
k=1

∂Xk

∂θi
(θ)

∂Xk

∂θj
(θ), i, j=1,··· ,d. (1.4)

The general second order elliptic PDE on manifold M has following form,

−
N

∑
i,j=1

Di(aij(x)Dju(x))+
N

∑
j=1

bj(x)Dju(x)+c(x)u(x)= f (x), x∈M (1.5)

The coeffcients aij(x), bj(x), c(x) and source term f (x) are known smooth functions of
spatial variables, i.e.

aij,bj,c, f ∈C1(M), i, j=1,··· ,N.

The matrix A(x) = (aij)i,j=1,···,N is symmetric and maps the tangent space TxM into it-
self and satisfies following elliptic condition: there exist generic constants 0< a0,a1 <∞
independent on x such that for any ξ=[ξ1,··· ,ξN ]

t ∈RN ,

a0

N

∑
i=1

ξ2
i ≤

N

∑
i,j=1

aij(x)ξiξ j ≤ a1

N

∑
i=1

ξ2
i (1.6)

The main contribution of this paper is to generalize the point integral method to solve
the general elliptic equation (1.5). The essential ingredient in PIM is the integral approxi-
mation of the differential operators. To approximate the elliptic equations (1.5), we need
two integral approximations for second order and first order term.

To approximate the second order term, we need to incorporate the coefficients, aij, in
the kernel functions. More precisely, we use kernel functions as follows:

Rt(x,y)=CtR

(
1
4t

N

∑
i,j=1

aij(x)(xi−yi)(xj−yj)

)
, (1.7)

R̄t(x,y)=CtR̄

(
1
4t

N

∑
i,j=1

aij(x)(xi−yi)(xj−yj)

)
(1.8)
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where R̄ and R satisfy the relation in (1.2),

(aij(x))i,j=1,···,N =(A(x))−1, A(x)=(aij(x))i,j=1,···,N .

With above kernel functions, we can prove following integral approximation for second
order term in (1.5).

−
∫
M

N

∑
i,j=1

aij(y)Diju(y)R̄t(x,y) dy≈ 1
t

∫
M
(u(x)−u(y))Rt(x,y) dy (1.9)

−2
∫

∂M

N

∑
i,j=1

ni(y)aij(y)Dju(y)R̄t(x,y) dτy.

Using the same kernel function, the integral approximation of the first order term is∫
M

N

∑
j=1

bj(y)Dju(y)R̄t(x,y) dy≈

1
2t

∫
M

N

∑
j,k=1

bj(y)ajk(x)(xk−yk)(u(x)−u(y))Rt(x,y) dy. (1.10)

Using these two integral approximations, the elliptic equation (1.5) is approximated
by an integral equation. On the point cloud, the integral equation is much easier to dis-
cretize. Therefore, a discretization of the elliptic equation (1.5) on point cloud is derived.

The rest of the paper is organized as follows. In Section 2, we derive the integral
approximations, (1.9) and (1.10). Errors of the approximations are analyzed. Based on
the integral approximations, point integral method for the elliptic equation (1.5) is given
in Section 3. Section 4 is devoted to numerical examples. In the end, conclusions are
made in Section 5.

2 Integral Approximation

In this section, we analyze the error in the integral approximations, (1.9) and (1.10). In
previous papers [24, 39], we proved the convergence of the point integral method for
elliptic equations with isotropic coefficients. With anisotropic coefficients, the integral
approximations proposed in this paper do not preserve the symmetry of the original
elliptic operator, which makes the convergence is difficult to analyze. So only local trun-
cation error is obtained. To get the local truncation error, some assumptions are listed in
Assumption 1.

Assumption 1.

1. Smoothness of the manifold: M,∂M are both compact and C∞ smooth d-dimensional
submanifolds isometrically embedded in a Euclidean space RN .
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2. Smoothness of the coefficients: aij ∈C2(M).

3. Assumptions on the kernel function R(r):

(a) Boundness: R(r) is bounded;

(b) Compact support: R(r)=0 for ∀r>1;

All the analysis in this section is carried out under above assumptions. In the state-
ments of the theorems in this section, we omit above assumptions to make the theorems
more concise. Regarding the integral approximation of the second order term (1.9), we
have theorem as follows.

Theorem 2.1. For any u∈C3(M), let

RI I(x)=
∫
M

N

∑
i,j=1

aij(y)Diju(y)R̄t(x,y) dy+
1
t

∫
M
(u(x)−u(y))Rt(x,y) dy

−2
∫

∂M

N

∑
i,j=1

ni(y)aij(y)Dju(y)R̄t(x,y) dτy.

where n=(n1,··· ,nd) is the out normal of ∂M, Rt(x,y) and R̄t(x,y) are kernel functions given
in (1.7) and (1.8) and Dij =Di(Dj) is the second order derivative operator.

There exists constants C,T0 depending only on M, ∂M, so that for any t≤T0,

∥RI I− Ibd∥L2(M)=Ct1/2∥u∥C3(M). (2.1)

with

Ibd =
∫

∂M

N

∑
i,m,n=1

ni(y)aim(x)R̄t(x,y)DmDnu(y)(xn−yn)dτy

−2
∫

∂M

N

∑
i,j=1

ni(y)(aij(y)−aij(x))R̄t(x,y)Dju(y)dτy.

Moreover,

∥Ibd∥L2(M)=O(t1/4).

Proof. In the proof, we use Einstein’s convention for repeated indices.
First of all, integration by parts gives that∫

M
Di(aij(y)Dju(y))R̄t(x,y)dy (2.2)

=−
∫
M

aij(y)Dju(y)DiR̄t(x,y)dy+
∫

∂M
ni(y)aij(y)Dju(y)R̄t(x,y)dτy
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Substituting above expansion in the first term of (2.2), we get

−
∫
M

aij(y)Dju(y)DiR̄t(x,y)dy (2.3)

= − 1
2t

∫
M

aij(y)(∂l′Φjgl′k′∂ju(y))∂i′Φigi′ j′∂j′Φnamn(x)(xm−ym)Rt(x,y)dy

The coefficients aij(y) maps the tangent space TyM into itself which means that there
exists cl′ l(y) such that

aij(y)∂l′Φj = cl′ l(y)∂lΦi.

Then

−
∫
M

aij(y)Dju(y)DiR̄t(x,y)dy (2.4)

= − 1
2t

∫
M

cl′ l(y)∂lΦi∂i′Φigl′k′gi′ j′∂j′Φnamn(x)(xm−ym)Rt(x,y)∂k′u(y)dy

= − 1
2t

∫
M

cl′ j′(y)∂j′Φngl′k′amn(x)(xm−ym)Rt(x,y)∂k′u(y)dy

= − 1
2t

∫
M

anl(y)∂l′Φl gl′k′amn(x)(xm−ym)Rt(x,y)∂k′u(y)dy

= − 1
2t

∫
M

anl(y)amn(x)(xm−ym)Rt(x,y)Dlu(y)dy

= − 1
2t

∫
M
(anl(y)−anl(x))amn(x)(xm−ym)Rt(x,y)Dlu(y)dy

− 1
2t

∫
M
(xl−yl)Dlu(y)Rt(x,y)dy.

Notice that

DnR̄t(x,y)=
1
2t

∂i′Φngi′ j′∂j′Φlaml(x)(xm−ym)Rt(x,y) (2.5)

=
1
2t

∂i′Φngi′ j′∂j′Φlaml(y)∂m′Φm(αm′−βm′)Rt(x,y)+O(1)

Since aml(y) also maps the tangent space TyM into itself, there exists dl′ l(y) such that

aml(y)∂m′Φm =dm′ l′(y)∂l′Φl .
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It follows that

DnR̄t(x,y)=
1
2t

dm′ l′(y)∂l′Φl∂j′Φl gi′ j′∂i′Φn(αm′−βm′)Rt(x,y)+O(1)

=
1
2t

dm′i′(y)∂i′Φn(αm′−βm′)Rt(x,y)+O(1)

=
1
2t

amn(y)∂m′Φm(αm′−βm′)Rt(x,y)+O(1)

=
1
2t

amn(y)(xm−ym)Rt(x,y)+O(1)

=
1
2t

amn(x)(xm−ym)Rt(x,y)+O(1) (2.6)

The last term of (2.4) becomes

1
2t

∫
M
(anl(y)−anl(x))amn(x)(xm−ym)Rt(x,y)Dlu(y)dy

=
∫
M
(anl(y)−anl(x))Dy

nR̄t(x,y)Dlu(y)dy+O(
√

t)

=−
∫
M

Dnanl(y)Dlu(y)R̄t(x,y)dy

+
∫

∂M
nn(y)(anl(y)−anl(x))R̄t(x,y)Dlu(y)dτy+O(

√
t) (2.7)

Now, we turn to estimate the first term of (2.4). In this step, we need the help of Taylor’s
expansion of u(x) at y,

u(x)−u(y)=(xj−yj)Dju(y)+
1
2

DmDnu(y)(xm−ym)(xn−yn)+O(∥x−y∥3) (2.8)

This expansion gives immediately

− 1
2t

∫
M
(xj−yj)Dju(y)Rt(x,y)dy (2.9)

= − 1
2t

∫
M

Rt(x,y)(u(x)−u(y))dy

+
1
4t

∫
M

Rt(x,y)DmDnu(y)(xm−ym)(xn−yn)dy+O(
√

t).

Next, we focus on the second term of (2.9). It follows from (2.6) that

aim(x)DiR̄t(x,y)=
1
2t

ami(x)am′i(x)(xm′−ym′)Rt(x,y)+O(1)

=
1
2t

ami(x)am′i(x)(xm′−ym′)Rt(x,y)+O(1)

=
1
2t
(xm−ym)Rt(x,y)+O(1) (2.10)
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The second term of (2.9) is calculated as

1
4t

∫
M

Rt(x,y)DmDnu(y)(xm−ym)(xn−yn)dy (2.11)

=
1
2

∫
M

aim(x)DiR̄t(x,y)DmDnu(y)(xn−yn)dy

=
1
2

∫
M

aim(x)(∂i′Φigi′ j′∂j′Φn)DmDnu(y)R̄t(x,y)dy

+
1
2

∫
∂M

ni(y)aim(x)R̄t(x,y)DmDnu(y)(xn−yn)dy.

Notice that

aim(x)(∂i′Φigi′ j′∂j′Φn)Dm

=aim(y)(∂i′Φigi′ j′∂j′Φn)(∂i′′Φmgi′′ j′′∂j′′)+O(
√

t)

=ci′′ l∂lΦi∂i′Φigi′ j′∂j′Φngi′′ j′′∂j′′+O(
√

t)

=ci′′ l∂lΦngi′′ j′′∂j′′+O(
√

t)

=amn∂i′′Φmgi′′ j′′∂j′′+O(
√

t)

=amnDm+O(
√

t)

From (2.11), we obtain

1
4t

∫
M

Rt(x,y)DmDnu(y)(xm−ym)(xn−yn)dy (2.12)

=
1
2

∫
M

amn(x)DmDnu(y)R̄t(x,y)dy

+
1
2

∫
∂M

ni(y)aim(x)R̄t(x,y)DmDnu(y)(xn−yn)dy+O(
√

t).

Now, using (2.2), (2.4), (2.9) and (2.12), we get∫
M

Di(aij(y)Dju(y))R̄t(x,y)dy

= − 1
2t

∫
M

Rt(x,y)(u(x)−u(y))dy+
1
2

∫
M

aij(x)DmDnu(y)R̄t(x,y)dy

+
∫
M

Diaij(x)Dju(y)R̄t(x,y)dy+
∫

∂M
ni(y)aij(y)Dju(y)R̄t(x,y)dy

+B.T.+O(
√

t) (2.13)

where

B.T. =
1
2

∫
∂M

ni(y)aim(x)R̄t(x,y)DmDnu(y)(xn−yn)dτy

−
∫

∂M
ni(y)(aij(y)−aij(x))R̄t(x,y)Dju(y)dτy (2.14)
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(2.1) is a direct implication of (2.13) and (2.14).

The boundary term Ibd can be calculated by a simple scaling argument. Since Rt is
normalized, which has a coefficient O(t−d/2) and the integral on the boundary absorbs
t−(d−1)/2, (x−y) or (aij(y)−aij(x)) takes another t−1/2, so Ibd is O(1) in L∞. Moreover, R̄t
is compactly supported, so the boundary term is nonzero only in a narrow layer adjacent
to the boundary and the width of the layer is O(

√
t). Based on this simple argument, we

can see

∥Ibd∥L2 =O(t1/4).

Theorem 2.2. For any u∈C1(M) and bj ∈C1(M), let

RI(x)=
∫
M

N

∑
j=1

bj(y)Dju(y)R̄t(x,y) dy

− 1
2t

∫
M

N

∑
j,k=1

bj(y)ajk(x)(xk−yk)(u(x)−u(y))Rt(x,y) dy.

Then

∥RI− Jbd∥L2(M)=O(t1/2).

with Jbd is the boundary term,

Jbd(x)=
∫

∂M

N

∑
j=1

nj(y)bj(y)(u(y)−u(x))R̄t(x,y) dτy,

where n=(n1,··· ,nd) is the out normal of ∂M. Moreover,

∥Jbd∥L2(M)=O(t1/4).
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Proof. The proof is straightforward by integration by parts.∫
M

N

∑
j=1

bj(y)Dju(y)R̄t(x,y) dy

=
∫
M

N

∑
j=1

bj(y)Dj (u(y)−u(x))R̄t(x,y) dy

=−
∫
M

N

∑
j=1

bj(y)(u(y)−u(x))DjR̄t(x,y) dy

+
∫

∂M

N

∑
j=1

njbj(y)(u(y)−u(x))R̄t(x,y) dτy

−
∫
M

N

∑
j=1

Djbj(y)(u(y)−u(x))R̄t(x,y) dy

=
1
2t

∫
M

N

∑
j,k=1

bj(y)ajk(x)(yk−xk)(u(y)−u(x))Rt(x,y) dy+ Jbd(x)+O(
√

t),

where n=(n1,··· ,nd) is the out normal of ∂M.

3 Point Integral Method

Now, we derive the point integral method for general second order elliptic equation (1.5)
based on the integral approximations proved in the previous section. Consider the gen-
eral second order elliptic equation

−
N

∑
i,j=1

Di(aij(x)Dju(x))+
N

∑
j=1

bj(x)Dju(x)+c(x)u(x)= f (x), x∈M.

Multiplying the kernel function R̄t(x,y) on both sides and using Theorems 2.1,2.2, it is
easy to get an integral equation to approximate the original elliptic equation:

Ltu(x)−
∫

∂M
R̄t(x,y)

N

∑
i,j=1

ni(y)aij(y)Dju(y) dτy=
∫
M

R̄t(x,y) f (y) dy, (3.1)

where

Ltu(x)=
1
t

∫
M
(u(x)−u(y))(1−M(x,y))Rt(x,y) dy+

∫
M

c(y)u(y)R̄t(x,y) dy, (3.2)

and

M(x,y)=
1
2

N

∑
i,j,k=1

(bj(y)−Diaij(y))ajk(x)(yk−xk). (3.3)
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If both aij and Diaij are given, we can use the integral equation (3.1) directly. In many
cases, only aij is given on the point cloud, we calculate Dkaij based on the integral ap-
proximation in Theorem 2.2.∫

M
Dkaij(y)R̄t(x,y)dy≈ 1

2t

∫
M

(
aij(x)−aij(y)

) N

∑
l=1

akl(x)(xl−yl)Rt(x,y) dy,

Futhermore, under the assumption that aij ∈C2(M), it is easy to get∫
M

(
Dkaij(x)−Dkaij(y)

)
R̄t(x,y)dy=O(

√
t).

Then, we have an approximation for Dkaij(x)

Dkaij(x)=
1
2t

∫
M

(
aij(x)−aij(y)

) N

∑
l=1

akl(x)(xl−yl)R̂t(x,y) dy+R4(x),

where

R̂t(x,y)=Rt(x,y)
/∫

M
R̄t(x,y) dy.

The error of this approximation is O(t1/4) in L2.

3.1 Boundary Conditions

Now, we consider to incoporate boundary conditions in the integral equation (3.1). The
Neumann boundary condition is very easy to handle.

N

∑
i,j=1

ni(x)aij(x)Dju(x)=g, x∈∂M (3.4)

We only need to substitute above boundary condition in the integral equation directly,

Ltu(x)−2
∫

∂M
R̄t(x,y)g(y) dτy=

∫
M

R̄t(x,y) f (y) dy, (3.5)

The treatment of the Robin boundary condition is also natural in the integral equa-
tions.

u(x)+β
N

∑
i,j=1

ni(x)aij(x)Dju(x)= g(x), x∈∂M (3.6)

It solves that
N

∑
i,j=1

ni(x)aij(x)Dju(x)=
1
β
(g(x)−u(x)).
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Then the integral equation (3.1) becomes

Ltu(x)−
2
β

∫
∂M

(g(y)−u(y))R̄t(x,y) dτy=
∫
M

f (y)R̄t(x,y) dy. (3.7)

The Dirichlet boundary condition

u(x)= g(x), x∈∂M (3.8)

is more difficult to deal with in PIM, since the normal derivative is not given. One sim-
plest way is using Robin boundary condition to approximate the Dirichlet boundary con-
dition,

u(x)+µ
N

∑
i,j=1

ni(x)aij(x)Dju(x)= g(x), x∈∂M (3.9)

with µ≪1.
It is easy to show that solution of the Robin problem for equation (1.5) converges to

that of the Dirichlet problem of the same equation, as µ→0, see Appendix B.
An approximate solution of the Dirichlet problem is given by following integral e-

quation with µ≪1:

Ltu(x)−
2
µ

∫
∂M

(g(y)−u(y))R̄t(x,y) dτy=
∫
M

f (y)R̄t(x,y) dy. (3.10)

This is the simplest way to enforce the Dirichlet boundary condition in the point integral
method. We can also use Augmented Lagrange Multiplier (ALM) based method [25] or
voloume constraint [10, 38] to deal with the Dirichlet boundary condition.

3.2 Discretization

In the point integral method, the discretization is straightforward. The manifold is as-
sumed to be sampled by a set of sample points P and a subset S ⊂ P sampling the
boundary of M. List the points in P respectively S in a fixed order P=(p1,··· ,pn) where
pi ∈RN ,1≤ i≤n, respectively S=(s1,··· ,snb) where si ∈P.

In addition, assume we are given two vectors V=(V1,··· ,Vn)t where Vi is an volume
weight of pi in M, and A=(A1,··· ,Anb)

t where Ai is an area weight of si in ∂M, so that
for any Lipschitz function f on M respectively ∂M,

∫
M f (x)dx respectively

∫
∂M f (x)dSx

can be approximated by ∑n
i=1 f (pi)Vi respectively ∑nb

i=1 f (si)Ai.
Based on above point cloud representation of the manifold, the integral equation (3.5)

is discretized as
n

∑
j=1

(1−M(pi,pj))Rt(pi,pj)(ui−uj)Vj+
n

∑
j=1

R̄t(pi,pj)c(pj)ujVj

=
n

∑
j=1

R̄t(pi,sj) f (pj)Vj+2 ∑
sj∈S

R̄t(pi,sj)g(sj)Aj. (3.11)



13

Integral equation (3.7) and (3.10) also have corresponding discretization.
For the volume weights V and A in the discretization, we use methods in [25] to

estimate them from the point cloud.

4 Numerical Examples

In this section, we will present numerical examples to demonstrate the performance of
the point integral method for elliptic equation with variable coefficients. In the numerical
examples, we solve the equation

Di(aij(x)Dju(x))= f (x) (4.1)

with Neumann and Dirichlet boundary conditions.
The parameter t in the computations is chosen to be t=λmax(A(x))δ2(x) where λmax(A(x))

is the largest eigenvalue of the matrix A(x)=(aij(x))=(aij(x))−1 at x∈M, and δ(x) is the
distance between x and its 10th nearest neighbor. t is adaptive to the coefficients and the
density of the sample points. It may be different at different point. Here we choose t such
that there are enough points even in the direction with fastest changing (eigenvector of
the coefficient matrix A(x) corresponding to the largest eigenvalue λmax). For Dirichlet
boundary conditions, µ=10−4 in (3.10).

4.1 Unit Disk and Annulus

In the first example, the computational M is an unit disk in R2. The exact solutions is
chosen to be ugt=x2−y2. In the second example, the exact solution is ugt=sin(x+y) and
the computational domain is an annulus in R2 with inner radius 1 and outer radius 3.
The coefficient matrix (aij) is given in (4.2) in both of these two examples.

(aij(x,y))=
1

r4+2r2+2

(
r2+2 −r
−r r2+1

)
, (4.2)

with r=
√

x2+y2.
The errors in PIM are listed in Table 1.PIM converges in both of these two examples.

The order of convergence is between 1 and 2 in both of these two examples.
PIM is also applicable in eigenvalue problem,

N

∑
i,j=1

Di(aij(x)Dju(x))=λu(x) (4.3)

For Neumann boundary, the integral equation is

1
t

∫
M
(u(x)−u(y))(1−M(x,y))Rt(x,y) dy=λ

∫
M

u(y)R̄t(x,y) dy, (4.4)
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Unit Disk
|V| 684 2610 10191 40296

Neumann 0.026258 0.016327 0.010253 0.006414
Dirichlet 0.033771 0.009291 0.002258 0.000923

Annulus
|V| 683 2624 10152 40578

Neumann 0.258189 0.100958 0.042372 0.017914
Dirichlet 0.044778 0.015825 0.004641 0.001614

Table 1: Errors in unit disk and annulus.

with

M(x,y)=−1
2

N

∑
i,j,k=1

Diaij(y)ajk(x)(yk−xk). (4.5)

For Dirichlet boundary, the integral approximation becomes

1
t

∫
M
(u(x)−u(y))(1−M(x,y))Rt(x,y) dy+

2
µ

∫
∂M

u(y)R̄t(x,y) dτy

=λ
∫
M

u(y)R̄t(x,y) dy. (4.6)

with µ=10−4 and M(x,y) is given in (4.5).
After discretization as described in Section 3.2, we get two generalized eigenvalue

problem.

n

∑
j=1

(1−M(pi,pj))Rt(pi,pj)(ui−uj)Vj =λ
n

∑
j=1

R̄t(pi,sj)ujVj, (4.7)

and
n

∑
j=1

(1−M(pi,pj))Rt(pi,pj)(ui−uj)Vj+2 ∑
sj∈S

R̄t(pi,sj)u(sj)Aj

=λ
n

∑
j=1

R̄t(pi,pj)ujVj. (4.8)

We solve the eigenvalue problems on an annulus with inner radius 1 and outer radius
3. The coefficent matrix (aij) is same as that in (4.2). We use the solutions given by finite
element method with very fine mesh as the exact solution.

The first 20 eigenvalues are plotted in Figure 1. We can seen that the results of PIM
converge to ground truth in both Neumann and Dirichlet problems. Eigenfunctions
Dirichlet condition are shown in Figure 2.
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(a) Neumann BC (b) Dirichlet BC

Figure 1: First 20 eigenvalues on the annulus. The numbers on the legends are numbers of sample points used
in computation.

4.2 Spherical Cap

In this example, we consider a spherical cap in R3. The height of the cap is 1/2, thus the
cap angle is π/3. We choose an orthonormal moving frame on the cap

e1=
(−z,0,x)√

1−y2
, e2=

(xy,y2−1,yz)√
1−y2

.

The coefficient matrix is given by the a pullback metric in this moving frame. Let ϕ be
the normal projection of the cap onto a disk in the x−y plane. Pullback the standard
Euclidean metric of the plane to the cap, we get

(aij)=
1

1−y2

(
z2 −xyz

−xyz x2y2+(1−y2)2

)
.

The coefficient matrix (aij) is the inverse of (aij).
The exact solution is chosen to be the restriction of ugt=x+y+z on the cap. The errors

of the numerical solutions are listed in Table 2. The convergence rates are approximately
1 and 2 for Neumann and Dirichlet problem respectively.

|V| 1199 4689 18540 73757
Neumann 0.083855 0.045875 0.025878 0.013443
Dirichlet 0.020104 0.006967 0.001376 0.000456

Table 2: Solving for ugt = x+y+z on cap

The eigenvalue problems with Neumann and Dirichlet boundary conditions are also
solved. The first 20 eigenvalues are plotted in Figure 3. And eigenfunctions are shown in
Figure 4.
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Figure 2: Examples of eigenfunctions on an annulus (Dirichlet BC).

4.3 Unit Sphere

Now, we consider the unit sphere S2 in R3. The unit sphere S2 is sampled at random
with uniform and non-uniform distribution. In the uniform sample, we first draw many
points in R3 according to isotropic normal distribution:

1
(2π)3/2 exp

(
− x2+y2+z2

2

)
. (4.9)

And then project these points to unit spere to get a uniform sample of S2.
In the non-uniform sample, the points in R3 are generated from an anisotropic normal

distribution

1
2(2π)3/2 exp

(
− x2

8
− y2

2
− z2

2

)
. (4.10)
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Figure 3: First 20 eigenvalues on the cap. The numbers on the legends are numbers of sample points used in
computation.
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Figure 4: Examples of eigenfunctions on the cap (Dirichlet BC).

Then, the points are projected to unit sphere.
In uniform and non-uniform samples, we both draw 400, 1600, 6400 and 25600 points.
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Figure 5 shows the uniform sampling and the non-uniform sampling with 6400 points
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Figure 5: 6400 sample points on S2 with volume weight in color.

In the test, the exact solution ugt is the restriction of x2−y2+z2 on S2. The relative
L2 errors are listed in Table 3 in different samples First, with uniform and non-uniform
sample, PIM both converges. However, in uniform sample, the errors are lower than
those in non-uniform samples.

NP 400 1600 6400 25600
uniform 0.429105 0.279128 0.097547 0.071941

non-uniform 0.352364 0.202293 0.194980 0.123390

Table 3: L2 error on S2

4.4 Real Surfaces: Alex and Bunny

At the end of this section, we test PIM in two real surfaces: a human face called Alex and
the surface of a rabbit called Bunny. ”Alex” is a surface with boundary and ”Bunny” is a
closed surface. These two faces only have point cloud representation. ”Alex” is sampled
by 20953 points(Figure 6) and ”Bunny” is sampled with 1227, 4904, 19611, 78440 points
(Figure 7(a)).

on ”Alex”, the coefficient matrix is chosen to be

(aij)=
1

sin(r/10)/2+1

(
1 0
0 1

)
,

where r=
√

x2+y2+z2.
With this isotropic coefficients, the eigenvalue problem is solved. Several eigenfunc-

tions are shown in Figure 6.
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On the surface ”Bunny”, . we solved the elliptic equation

−
N

∑
i,j=1

(Diaij(x)Dju(x))=y
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with

(aij)=
1

z2+1

(
1 0
0 1

)
,

where x,y,z are the Cartesian coordinates of the ambient space R3. We use the homoge-
nous Dirichlet boundary condition. The computations are carried out in point clouds
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(a) Bunny (b) PIM solution

Figure 7: ”Bunny” and one PIM solution.

with 1227, 4904, 19611, 78440 points. The PIM solution with 78440 points is shown in
Figure 7(b).

We did the resolution study in the samples with 1227, 4904, 19611, 78440 points. To
compute the differences of the solutions on different point clouds, we interplate the so-
lution between different point clouds. Fortunately, PIM gives a natural interplation

If(u)(x)=
∑pj∈P(1− 1

2 M(x,pj))Rt(x,pj)ujVj+t∑pj∈P R̄t(x,pj) f jVj

∑pj∈P(1− 1
2 M(x,pj))Rt(x,pj)Vj

. (4.11)

The relative L2 errors are listed in Table 4. The results suggest that the PIM in this
example converges, however, the convergence rate is low.

Table 4: Solving elliptic equation on Bunny

|V| 4904 v.s. 1227 19611 v.s. 4904 78440 v.s. 19611
error 0.718803 0.658242 0.574436

5 Conclusion

In this paper, we generalized the point integral method to solve the second order linear
elliptic PDEs with smooth coefficients on point cloud. First, an integral equation is de-
rived to approximate the original PDE. The main advantage of the integral equation is
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that there is not any differential operators, thus easy to discretize over the point cloud.
The local truncation error analysis shows that the L2 error of the integral approximation
is of order t1/4, where t is a small parameter in the kernel function associate with the
density of the points in the real computation. Then, the integral equation is discretized
over the point cloud which gives a linear system. The numerical solution on the point
cloud follows by solving this linear system.

The numerical experiments show that PIM is an effective method to solve the ellip-
tic PDE on point cloud. There are still several drawbacks of the current version of the
point integral method. The integral approximations in this paper do not preserve the
symmetry of the original elliptic operator, which makes the convergence is difficult to
analyze. If the coefficients are isotropic, we can design another integral approximation
which preserve the symmetry and the convergence has been also proved consequent-
ly [24]. Another drawback is that the convergence rate of PIM is low as shown in the
numerical experiments. This is due to the low accuracy order in discretization of the in-
tegral equation. We are trying to use high order quadrature rule to discretize the integral
equation to improve the accuracy of the point integral method.

A Approximation of Robin Boundary to Dirichlet Boundary

Theorem A.1. If u∈H2(M) is the solution of the equation (1.5) with Dirichlet condition (3.8)
and uβ ∈H2(M) the solution of (1.5) with Robin condition (3.6), i.e.

−
N

∑
i,j=1

Di(aij(x)Dju(x))+
N

∑
j=1

bj(x)Dju(x)+c(x)u(x)= f (x), x∈M,

u(x)+β
N

∑
i,j=1

ni(x)aij(x)Dju(x)= g(x), x∈∂M.

Let cmin be the minimum of c over M, and C(b) =
∥∥bj
∥∥

∞. If the condition 4a0cmin >C(a,b)2

holds where a0 is the constant in the elliptic condition (1.6), then

∥u−uβ∥H1(M)≤Cβ1/2∥u∥H2(M)

Proof. Let v=u−uβ, then v is the solution of
−

N
∑

i,j=1
Di(aijDjv)+

N
∑

j=1
bjDjv+cv= 0, y∈M,

v+β
N
∑

i,j=1
niaijDjv= β

N
∑

i,j=1
niaijDju, y∈∂M.

Multiply v on both sides of the above equation, integrate by parts, and use the boundary



22

condition for v and the properites of the coefficients, we get

0=−
∫
M

v
N

∑
i,j=1

Di(aijDjv) dy+
∫
M

v
N

∑
j=1

bjDjv dy+
∫
M

cv2 dy

=
∫
M

N

∑
i,j=1

aijDivDjv dy+
∫
M

N

∑
j=1

bjvDjv dy

−
∫

∂M
v

N

∑
i,j=1

niaijDjv dτy+
∫
M

cv2 dy

≥a0

∫
M
|Dv|2 dy−C(a)

∫
M

N

∑
i,j=1

|v||Djv| dy

+
1
β

∫
∂M

v2 dτy−
∫

∂M
v

N

∑
i,j=1

niaijDju dτy+
∫
M

cv2 dy,

where C(b)=
∥∥bj
∥∥

∞. By Cauchy-Schwartz inequality, we have∫
M

N

∑
i,j=1

|v||Djv| dy≤ 1
4γ

∫
M

v2 dy+γ
∫
M
|Dv|2 dy,

∫
∂M

v
N

∑
i,j=1

niaijDju dτy≤
1

4β

∫
∂M

v2 dτy+βa1

∫
∂M

|Du|2 dτy,

where γ is any positive number. Therefore we have

C1

∫
M

v2 dy+C2

∫
M
|Dv|2 dy+

3
4β

∫
∂M

v2 dτy≤a1β
∫

∂M
|Du|2 dτy, (A.1)

where

C1= cmin−
C(b)
4γ

, C2= a0−γC(b),

and cmin is the minimum of c over M. If the condition 4a0cmin > C(b)2 holds, we can
choose a γ such that C1>0 and C2>0. Then in the inequality (A.1), each term on the left
side is no more than the right side. By trace theorem, there is∫

∂M
|Du|2 dτy≤∥u∥2

H2(M).

By Poincaré’s inequality, we get

∥v∥2
H1(M)≤Cβ∥u∥2

H2(M).
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