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Abstract. In this paper, we consider the harmonic extension problem, which is widely used in
many applications of machine learning. We formulate the harmonic extension as solving a Laplace-
Beltrami equation with Dirichlet boundary condition. We use the point integral method (PIM)
proposed in [14, 19, 13] to solve the Laplace-Beltrami equation. The basic idea of the PIM method
is to approximate the Laplace equation using an integral equation, which is easy to be discretized
from points. Based on the integral equation, we found that traditional graph Laplacian method
(GLM) fails to approximate the harmonic functions near the boundary. One important application
of the harmonic extension in machine learning is semi-supervised learning. We run a popular semi-
supervised learning algorithm by Zhu et al. [24] over a couple of well-known datasets and compare
the performance of the aforementioned approaches. Our experiments show the PIM performs the
best. We also apply PIM to an image recovery problem and show it outperforms GLM. Finally, on
the model problem of Laplace-Beltrami equation with Dirichlet boundary, we prove the convergence
of the point integral method.

Keywords: harmonic extension; point cloud; point integral method; Laplace-Beltrami
operator; Dirichlet boundary.

1. Introduction. In this paper, we consider interpolation on a point cloud in
high dimensional space. The problem is described as follows. Let P = {p1, · · · ,pn}
be a set of points in R

d and S = {s1, · · · , sm} be a subset of P . Let u be a function
on the point set P and the value of u on S ⊂ P is given as a function g over S, i.e.
u(s) = g(s), ∀s ∈ S. In this paper, S is called the labeled set. From the given value
on S, we want to refer the value of u on the whole data set P . This is a fundamental
mathematical model in many data analysis and machine learning problem.

This is an ill-posed problem. The function of u can be any value on P\S, if we do
not have any assumption on u. To make this problem well-posed, usually, we assume
that the point cloud P sample a smooth manifold M embedded in R

d and u is a
smooth function on M. Based on this assumption, one idea is to find the smoothest
u such that u(s) = g(s), ∀s ∈ S. One of the simplest measurement of the smoothness
of a function u is the L2 norm of the gradient of u, which gives following objective
function to minimize:

(1.1) JM(u) =
1

2

∫

M
‖∇Mu(x)‖2dx.

where M is the underlying manifold, P is a sample of M, ∇M is the gradient on M.
The classical harmonic extension problem, also known as the Dirichlet problem

for Laplace equation, has been studied by mathematicians for more than a century
and has many applications in mathematics. The discrete harmonicity has also been
extensively studied in the graph theory [5]. For instance, it is closely related to random
walk and electric networks on graphs [6]. In machine learning, the discrete harmonic
extension and its variants have been used for semi-supervised learning [24, 22].
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One method which is widely used in many applications in image processing and
data analysis is using the nonlocal gradient to discretize the gradient in (1.1), which
gives following discrete objective function:

(1.2) JP (u) =
1

2

∑

x,y∈P

w(x,y)(u(x)− u(y))2,

Here w(x,y) is a given weight function. One often used weight is the Gaussian weight,

w(x,y) = exp(−‖x−y‖2

σ2 ), σ is a parameter, ‖ · ‖ is the Euclidean norm in R
d.

Based on the nonlocal gradient, the interpolation on point cloud is formulated as
an optimization problem:

(1.3) min
u

1

2

∑

x,y∈P

w(x,y)(u(x)− u(y))2,

with the constraint

(1.4) u(x) = g(x), x ∈ S.

The optimal solution of above optimization problem is given by solving a linear
system:















∑

y∈P

(w(x,y) + w(y,x))(u(x)− u(y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

(1.5)

This is the well known graph Laplacian [5, 24] which has been used widely in many
problems.

Graph Laplacian and its theoretical property have been studied extensively. When
the manifold has no boundary, the pointwise convergence of the graph Laplacian to the
manifold Laplacian was shown in [1, 12, 11, 20], and the spectral convergence of the
graph Laplacian was shown in [2]. When there are boundaries, Singer and Wu [21] and
independently Shi and Sun [18] have shown that the spectra of the graph Laplacian
converge to that of manifold Laplacian with Neumann boundary. However, for the
graph Laplacian with Dirichlet type boundary, such as (1.5), the graph Laplacian
approach has inconsistent problem. In other word, the solution given by the graph
Laplacian is not continuous on the labeled set. This inconsistency can be seen clearly
in a simple example.

Let P be the union of 200 randomly sampled points over the interval [0, 2] and
S = {0, 1, 2}. Set g = 0 at 0, 2 and g = 1 at 1. We run the above graph Laplacian
method over this example. Figure 1 (a) shows the resulting minimizer. It is well-
known that the harmonic function over the interval (0, 2) with the Dirichlet boundary
g, in the classical sense, is a piece linear function, i.e., u(x) = x for x ∈ (0, 1)
and u(x) = 2 − x for x ∈ (1, 2); Clearly, the function computed by GLM does not
approximate the harmonic function in the classical sense. In particular, the Dirichlet
boundary has not been enforced properly, and in fact the obtained function is not
even continuous near the boundary.

In this paper, to derive a consistent method, we consider a model problem of the
harmonic extension in the continuous form. As shown in Figure 2, M is a submanifold
embedded in R

d. Consider a function u(x) defined on M and u(x) is known in some
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Fig. 1. 1D examples. (a): interpolation given by the graph Laplacian; (b): interpolation given
by the point integral method. Note in (a), the recovered function is not continuous at the labelled
set {0, 1, 2}.

regions Ω1∪· · ·∪Ωk ⊂ M. Now, we want to extend the function u(x) from Ω1∪· · ·∪Ωk

to the entire manifold M.

(1.6) min
u∈H1(M)

1

2

∫

M
‖∇Mu(x)‖2dx.

with the constraint

u(x) = g(x), x ∈ Ω1 ∪ · · · ∪ Ωk.

Ω1 Ω2

M

∂M

∂Ω1

∂Ω2

u(x) = g1(x), x ∈ Ω1

u(x) = g2(x), x ∈ Ω2

∆u(x) = 0

∂u
∂n
(x) = 0, x ∈ ∂M

Fig. 2. Sketch of the manifold.

It is well known that above optimization problem (1.6) is solved by a Laplace-
Beltrami equation with mixed boundary conditions:

(1.7)











−∆Mu(x) = 0, x ∈ M,
u(x) = g(x), x ∈ ∂MD,

∂u

∂n
(x) = 0, x ∈ ∂MN .

where ∂MD is the boundary of Ω1 ∪ · · · ∪Ωk, and ∂MN is the real boundary of M.

For the model problem (1.7), the point integral method (PIM) [14, 19, 13] has
been shown to be a consistent and efficient method. In this paper, we will use the point
integral method to solve the harmonic extension problem and prove the convergence
of the point integral method for the model problem (1.7). The key step in the point
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integral method is to use an integral equation to approximate the original Laplace-
Beltrami equation (1.7) with a small parameter 0 < β ≪ 1:

1

t

∫

M
Rt(x,y)(u(x)− u(y))dy − 2

β

∫

∂MD

R̄t(x,y)(g(y)− u(y))dτy = 0,(1.8)

The kernel function Rt and R̄t are defined as follows:

(1.9) Rt(x,y) = R

( |x− y|2
4t

)

, R̄t(x,y) = R̄

( |x− y|2
4t

)

where R : R+ → R
+ is a C2 function which is integrable over [0,+∞), t > 0 is a

parameter and

R̄(r) =

∫ +∞

r

R(s)ds.

When R(r) = e−r, R̄t(x,y) = Rt(x,y) = exp

(

−|x− y|2
4t

)

are the well-known Gaus-

sian.
The integral equation (1.8) implies a linear system after proper discretization:

(1.10)
∑

y∈P

Rt(x,y)(u(x)− u(y))− µ
∑

y∈S

R̄t(x,y)(g(y)− u(y)) = 0, x ∈ P

Here µ is a parameter associated with β whose choice will be discussed in Section 2.
Figure 1 (b) shows the interpolation computed by the point integral method in

the simple 1D example. It is shown clearly that the solution given by the point
integral method is continuous in the labeled set S while the graph Laplacian gives an
discontinuous solution. Nevertheless, for the Laplace-Beltrami equation with Dirichlet
boundary, we prove that the point integral method converges to the true solution. The
result is given in Section 5.

One important application of the harmonic extension is semi-supervised learn-
ing [23]. We will perform the semi-supervised learning using the PIM over a couple
of well-known data sets, and compare its performance to GLM as well as the closely
related method by Zhou et al. [22]. The experimental results show that the PIM have
the best performance. We also consider the image recovery problem and harmonic
extension is used to recover the subsampled image based on the patch manifold.

The rest of the paper is organized as follows. The point integral method for the
harmonic extension is given in Section 2. The examples of the semi-supervised learning
and the image recovery are shown in Section 3 and Section 4 respectively. In Section
5, the convergence of the point integral method is proved for the Laplace-Beltrami
equation with Dirichlet boundary.

2. Point Integral Method. The key observation in the point integral method
is an integral approximation of the Laplace-Beltrami operator.

−
∫

M
∆Mu(y)R̄t(x,y)dy ≈ 1

t

∫

M
(u(x)− u(y))Rt(x,y)dy − 2

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy,

(2.1)

Next, we give a brief derivation of the integral approximation (2.1) in the Euclidean
space R

d. For a general submanifold, the rigorous analysis of the error in (2.1) can
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be found in Theorem 5.4. First, by integration by parts,

∫

M
∆u(y)R̄t(x,y)dy(2.2)

=−
∫

M
∇u(y) · ∇R̄t(x,y)dy +

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy

=
1

2t

∫

M
(y − x) · ∇u(y)Rt(x,y)dy +

∫

∂M

∂u(y)

∂n
R̄t(x,y)dτy.

The Taylor expansion of the function u gives that

u(y)− u(x) = (y − x) · ∇u(y)− 1

2
(y − x)THu(y)(y − x) +O(‖y − x‖3),(2.3)

where Hu(y) is the Hessian matrix of u at y. The second order term is derived as
follows under the assumption that u is smooth enough,

1

4t

∫

M
(y − x)THu(y)(y − x)Rt(x,y)dy

(2.4)

=
1

4t

d
∑

i,j=1

∫

M
(yi − xi)(yj − xj)∂iju(y)Rt(x,y)dy

=− 1

2

d
∑

i,j=1

∫

M
(yi − xi)∂iju(y)∂j

(

R̄t(x,y)
)

dy

=
1

2

d
∑

i,j=1

∫

M
∂j(yi − xi)∂iju(y)R̄t(x,y)dy +

1

2

d
∑

i,j=1

∫

M
(yi − xi)∂ijju(y)R̄t(y,x)dy

− 1

2

d
∑

i,j=1

∫

∂M
(yi − xi)nj∂iju(y)R̄t(x,y)dτy

=
1

2

∫

M
∆u(y)R̄t(x,y)dy − 1

2

d
∑

i,j=1

∫

∂M
(yi − xi)nj∂iju(y)R̄t(x,y)dτy +O(t1/2).

Now, we only need to deal with the boundary term in above equality. Since Rt is
normalized, which has a coefficient O(t−d/2) and the integral on the boundary absorbs
t−(d−1)/2 and (x− y) takes another t−1/2, so boundary term is O(1). Moreover, R̄t is
compactly supported, so the boundary term is supported in a narrow layer adjacent
to the boundary and the width of the layer is O(

√
t). Based on this simple argument,

the L2 norm of the boundary term is O(t1/4) which is small and is dropped thereby.
Then the integral approximation (2.1) is obtained following from the equations (2.2),
(2.3) and (2.4).

Using the integral equation (2.1) and the boundary condition of (1.7), we know
the Laplace-Beltrami equation with mixed boundary conditions is approximated by
an integral equation.

1

t

∫

M
(u(x)− u(y))Rt(x,y)dy − 2

∫

∂MD

∂u(y)

∂n
R̄t(x,y)dτy = 0,(2.5)
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However, on ∂MD, ∂u
∂n is not known. To address this issue, we use the Robin boundary

condition to approximate the original Dirichlet boundary condition on ∂MD. Then,
we consider the following Robin/Neumann mixed boundary problem.

(2.6)



















−∆Mu(x) = 0, x ∈ M,

u(x) + β
∂u(x)

∂n
= g(x), x ∈ ∂MD,

∂u

∂n
(x) = 0, x ∈ ∂MN .

where β > 0 is a parameter. It is easy to prove that the solution of the above
Robin/Neumann problem (2.6) converges to the solution of the Dirichlet/Neumann
problem (1.7) as β goes to 0 (see Theorem 5.3).

By substituting the Robin boundary ∂u(x)
∂n = 1

β (g(x)−u(x)) in the integral equa-

tion (2.5), we get an integral equation to solve the Robin/Neumann problem.

1

t

∫

M
(u(x)− u(y))Rt(x,y)dy − 2

β

∫

∂MD

(g(y)− u(y))R̄t(x,y)dτy = 0,(2.7)

When β > 0 is small enough.
Assume that the point set P = {p1, · · · ,pn} samples the submanifold M and it

is uniformly distributed. Denote the labeled set S = {s1, · · · , sm} ⊂ P . From the
continuous point of view, each point si ∈ S stands for a small area around it. In this
sense, the labeled set S corresponds to the boundary ∂MD.

Based on this observation, the discretization of the integral equations (2.7) is
given as

(2.8)
∑

y∈P

Rt(x,y)(u(x)− u(y))− µ
∑

y∈S

R̄t(x,y)(g(y)− u(y)) = 0, x ∈ P

where µ = 2
β

n|∂MD|
m|M| . The parameter µ seems to be very complicated. However, in

the computation of the harmonic extension, we give µ directly instead of using above
formula of µ. One typical choice of µ is |P |/|S|, which is the inverse of the sample
rate.

Remark 2.1. Based on the discussion in this section, we can see clearly that
in the graph Laplacian, the important boundary term is dropped. Consequently, the
boundary condition is enforced correctly. This effect has been shown in Figure 1 and
more evidences are given in the example section.

3. Semi-supervised Learning. In this section, we briefly describe the algo-
rithm of semi-supervised learning based on the harmonic extension proposed by Zhu
et al. [24]. We plug into the algorithm the aforementioned approach for harmonic
extension, and apply them to several well-known data sets, and compare their perfor-
mance.

Assume we are given a point set P = {p1, · · · ,pm,pm+1, · · · ,pn} ⊂ R
d, and a la-

bel set {1, 2, · · · , l}, and the label assignment on the firstm points L : {p1, · · · ,pm} →
{1, 2, · · · , l}. In a typical setting, m is much smaller than n. The purpose of the semi-
supervised learning is to extend the label assignment L to the entire P , namely, infer
the labels for the unlabeled points.

Think of the label points as the boundary S = {p1, · · · ,pm}. For the label
i ∈ {1, 2, · · · , l}, we set up the Dirichlet boundary gi as follows. If a point pj ∈ S
is labeled as i, set gi(pj) = 1, and otherwise set gi(pj) = 0. Then we compute
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Algorithm 1 Semi-Supervised Learning

Require: A point set P = {p1, · · · ,pm,pm+1, · · · ,pn} ⊂ R
d and a partial label

assignment L : S = {p1, · · · ,pm} → {1, 2, · · · , l}
Ensure: A complete label assignment L : P → {1, 2, · · · , l}
for i = 1 : l do

for j = 1 : m do
For any pj ∈ S, set gi(pj) = 1 if L(pj) = i, and otherwise set gi(pj) = 0.

end for
Compute the harmonic extension ui of gi by solving

(3.1)
∑

y∈P

Rt(x,y)(ui(x)− ui(y))− µ
∑

y∈S

R̄t(x,y)(gi(y)− ui(y)) = 0, x ∈ P.

end for
for j = m+ 1 : n do

L(pj) = k where k = argmax
i≤l

ui(pj).

end for

the harmonic extension ui of gi using the aforementioned approaches. In this way,
we obtain a set of l harmonic functions u1, u2, · · · , ul. We label pj using k where
k = argmax

i≤l
ui(pj). The algorithm is summarized in Algorithm 1. Note that this

algorithm is slightly different from the original algorithm by Zhu et al. [24] where
only one harmonic extension was computed by setting gi(pj) = k if pj has a label k.

3.1. Experiments. We now apply the above semi-supervised learning algorithm
to a couple of well-known data sets: MNIST and 20 Newsgroups. We do not claim
the state of the art performance on these datasets. The purpose of these experiments
is to compare the performance of different approaches of harmonic extension. We
also compare to the closely related method of local and global consistency by Zhou
et al. [22].

In the computations, the kernel function is chosen to be Gaussian, such that
R̄t(x,y) = Rt(x,y) and

Rt(x,y) = exp

(

−‖x− y‖2
4t

)

.

The parameter t will be given later. In the computaitons, we set µ = 104 in (3.1).
MNIST : In this experiment, we use the MNIST of dataset of handwritten digits [4],
which contains 60k 28×28 gray scale digit images with labels. We view digits 0 ∼ 9 as
ten classes. Each digit can be seen as a point in a common 784-dimensional Euclidean
space. We randomly choose 16k images. Specifically, there are 1606, 1808, 1555, 1663,
1552, 1416, 1590, 1692, 1521 and 1597 digits in 0 ∼ 9 class respectively.

To set the parameter t, we build a graph by connecting a point xi to its 10
nearest neighbors under the standard Euclidean distance. We compute the average of
the distances for xi to its neighbors on the graph, denoted hi. Let h be the average
of hi’s over all points and set t = h2. The distance |xi−xj | is computed as the graph
distance between xi and xj . In the method of local and global consistency, we follow
the paper [22] and set the width of the RBF kernel to be 0.3 and the parameter α in
the iteration process to be 0.3.

7



For a particular trial, we choose k (k = 1, 2, · · · , 10) images randomly from each
class to assemble the labeled set B and assume all the other images are unlabeled. For
each fixed k, we do 100 trials. The error bar of the tests is presented in Figure 3 (a).
It is quite clear that the PIM has the best performance when there are more than 5
labeled points in each class, and the GLM has the worst performance.
Newsgroup: In this experiment, we use the 20-newsgroups dataset, which is a classic
dataset in text classification. We only choose the articles from topic rec containing four
classes from the version 20-news-18828. We use Rainbow (version:20020213) to pre-
process the dataset and finally vectorize them. The following command-line options
are required1: (1)- -skip-header : to avoid lexing headers; (2)- -use-stemming : to mod-
ify lexed words with the ‘Porter’ stemmer; (3)- -use-stoplist : to toss lexed words that
appear in the SMART stoplist; (4)- -prune-vocab-by-doc-count=5 : to remove words
that occur in 5 or fewer documents; Then, we use TF-IDF algorithm to normalize
the word count matrix. Finally, we obtain 3970 documents (990 from rec.autos, 994
from rec.motorcycles, 994 from rec.sport.baseball and 999 from rec.sport.hockey) and
a list of 8014 words. Each document will be treated as a point in a 8014-dimensional
space.

To deal with text-kind data, we define a new distance introduced by Zhu et al. [24]:
the distance between xi and xj is d(xi, xj) = 1− cosα, where α is the angle between
xi and xj in Euclidean space. Under this new distance, we ran the same experiment
with the same parameter as we process the above MNIST dataset. The error bar
of the tests for 20-newsgroups is presented in Figure 3 (b). A similar pattern result
is observed, namely the PIM has the best performance when there are more than 2
labeled points in each class, and the GLM has the worst performance.
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Fig. 3. (a) the error rates of digit recognition with a 16000-size subset of MNIST dataset;
(b) the error rates of text classification with 20-newsgroups.rec(a 8014-dimensional space with 3970
data points).

4. Image Recovery. In this example, we consider an image recovery problem.
The original image is the well known image of Barbara (256 × 256) which is shown
in Figure 4(a). Then, we subsample the image and only retain 1% of the pixels. The
positions of the retained pixels are selected at random. The subsampled image is
shown in Figure 4(b). Now, we want to recover the original image from the subsam-
pled image. This is a classical problem in image processing which has been studied
extensively. Here, we only use this example to demonstrate the difference between
PIM method and the Graph Laplacian approach, rather than presenting an image
recovery method.

1all the following options are offered by Rainbow
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First, we construct a point cloud from the original image, denoted by f , by using
so called patch approach which is widely used in image processing [3, 10]. For each
pixel xi in the image f , we extract a patch around it of size 9× 9 which is denoted as
pxi

(f). Here i = 1, · · · , 2562. For the pixels on the boundary, the patch is obtained
by extending the image symmetrically. Then, we can get 2562 patches and each patch
is 9 × 9. These patches consist of a point cloud in R

81. Denote this point cloud as
P = {pxi

(f) : i = 1, · · · , 2562}. And function u on P is defined as u(pxi
(f)) = f(xi),

f(xi) is the value of image f at pixel xi. Using this definition, at some patches which
around the retained pixels, the value of u is known. The collection of these patches
is denoted as S which is a subset of P .

Here, we recover the whole function u by harmonic extension, i.e. solving following
linear system

(4.1)
∑

y∈P

Rt(x,y)(u(x)− u(y))− µ
∑

y∈S

R̄t(x,y)(g(y)− u(y)) = 0, x ∈ P.

We also compute the solution given by the graph Laplacian.

(4.2)







∑

y∈P

Rt(x,y)(u(x)− u(y)) = 0, x ∈ P\S,

u(x) = g(x), x ∈ S.

We remark that in this example the point cloud P is constructed using the original
image shown in Figure 4(a). So this is not an full image recovery method since the
original image is used. However, by update the image iteratively, we can get a real
image recovery method [15].

In the computations, we take the weight Rt(x,y) as the Gaussian kernel. In this
case, R̄t(x,y) = Rt(x,y) and

Rt(x,y) = exp

(

−‖x− y‖2
t(x)

)

.

Here, we choose t adaptive to the distribution of the point cloud. More specifically,
t(x) = σ(x)2 and σ(x) is chosen to be the distance between x and its 20th nearest
neighbor, To make the weight matrix sparse, the weight is truncated to the 50 nearest
neighbors. The parameter µ in (4.1) is set to be |P |/|S|.

The solution of PIM (4.1) is given in Figure 4(c) and the solution of GLM (4.2)
is given in Figure 4(d). Obviously, the result given by PIM is much better. To get a
closer look at of the recovery, Figure 5 shows the zoom in image enclosed by the box
in Figure 4(a). In Figure 5(d), there are many pixels which are not consistent with
their neighbors. Comparing with the subsampled image 5(b), it is easy to check that
these pixels are actually the retained pixels. This phenomenon suggests that in GLM,
(4.2), the values at the retained pixels are not spread to their neighbors properly. The
reason is that in GLM a non-negligible boundary term is dropped as we pointed in
this paper. On the contrary, in PIM, the boundary term is retained and the resultant
recovery is much better and smoother as shown in Figure 4(c) and 5(c).

As the sample rate grows, the inconsistency in the graph Laplacian may be allevi-
ated. Figure 6(a) gives the recovery obtained by graph Laplacian from 30% subsam-
ples. Visually, the result is much better and the inconsistent pixels disappear. This
can be explained qualitatively by the theory of volume constraint [7, 16]. When the
number of sample points increase, the sample points may accumulate together. Then
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(c) (d)

Fig. 4. (a) original image; (b) subsampled image (1% of the pixels are retained); (c) recovered
image by PIM; (d) recovered image by GL.

the value of function is given on some volumes rather than the discrete points. Based
on the theory of volume constraint, in this case, the Dirichlet boundary condition may
be correctly enforced as long as the volume is larger than the support of the weight
function. But the inconsistency can not completely removed in the graph Laplacian.
Figure 6(c) shows the zoom in image enclosed by the box in Figure 6(a). Comparing
with the result given by PIM, Figure 6(b)(d), the reconstruction given by PIM is
much smoother and better.

5. Convergence of the Point Integral Method for Dirichlet Problem.
In this section, we will establish the convergence results of the point integral method
for solving the Laplace-Beltrami equation with Dirichlet boundary (5.1). Here, we
consider the homogeneous Dirichlet boundary conditions, i.e.

(5.1)

{

−∆Mu(x) = f(x), x ∈ M
u(x) = 0, x ∈ ∂M

The analysis can be easily generalized to the non-homogeneous boundary conditions.
In this section, we assume the point cloud P samples the submanifold M and

a subset S ⊂ P samples the boundary, ∂M. List the points in P in a fixed order
P = (p1, · · · ,pn) where pi ∈ R

d, 1 ≤ i ≤ n and S = (p1, · · · ,pm) ⊂ P with m < n.

10



(a) (b)

(c) (d)

Fig. 5. Zoom in images. (a) original image; (b) subsampled image (1% of the pixels are
retained); (c) recovered image by PIM; (d) recovered image by GL;

In addition, assume we are given two vectors V = (V1, · · · , Vn) where Vi is an volume
weight of pi in M, and A = (A1, · · · , Am) where Ai is an area weight of pi in ∂M.

The discretization of (5.1) in the point integral method over the point cloud
(P, S,V,A) is

(5.2)
1

t

n
∑

j=1

Rt(pi,pj)(ui − uj)Vj +
2

β

m
∑

j=1

R̄t(pi,pj)ujAj =
n
∑

j=1

R̄t(pi,pj)fjVj .

where fj = f(pj). In this section, we add a normalization factor Ct in the kernel
function,

(5.3) Rt(x,y) = CtR

(‖x− y‖2
4t

)

, R̄t(x,y) = CtR̄

(‖x− y‖2
4t

)

with Ct =
1

(4πt)k/2 and k is the dimension of the manifold M. This factor does not

change the integral equation. It is introduced to normalize the kernel functions.

5.1. Assumptions and Results. Before proving the convergence of the point
integral method, we need to clarify the meaning of the convergence between the point

11



(a) (b)

(c) (d)

Fig. 6. Recovered image by graph Laplacian from 30% subsamples. (a) recovered image by GL;
(b) recovered image by PIM; (c) zoom in of the image reconstructed by GL; (c) zoom in of the image
reconstructed by PIM.

cloud (P, S,V,A) and the manifold M. In PIM, the Laplace-Beltrami equation is
approximated by an integral equations. So it is natural to consider the convergence
in the sense that the integrals converge, i.e., for any f ∈ C1(M), the summation over
P with weights V converges to the integral of f over M. More precisely, we define an
integral accuracy index h(P, S,V,A,M, ∂M) to measure the difference between the
summation and the integral.

Definition 5.1 (Integral Accuracy Index). For the point cloud (P, S,V,A)
which samples the manifold M and ∂M, the integral accuracy index h(P, S,V,A,M, ∂M)
is defined as

h(P, S,V,A,M, ∂M) = max {h(P,V,M), h(S,A, ∂M)}

and

h(P,V,M) = sup
f∈C1(M)

∣

∣

∫

M f(y)dy −∑n
i=1 f(pi)Vi

∣

∣

|supp(f)|‖f‖C1(M)
,

h(S,A, ∂M) = sup
g∈C1(∂M)

∣

∣

∫

∂M g(y)dτy −∑m
i=1 g(pi)Ai

∣

∣

|supp(g)|‖g‖C1(∂M)

12



To simplify the notation, we denote h = h(P, S,V,A,M, ∂M) in the rest of the
paper.

Using the definition of integrable index, we say that the point cloud (P, S,V,A)
converges to the manifold M if h → 0. The convergence analysis in this paper is
based on the assumption that h is small enough.

To get the convergence, we also need some assumptions on the regularity of the
submanifold M and the integral kernel function R.

Assumption 5.1.

• Smoothness of the manifold: M, ∂M are both compact and C∞ smooth
k-dimensional submanifolds isometrically embedded in a Euclidean space Rd.

• Assumptions on the kernel function R(r):
(a) Smoothness: R ∈ C2(R+);
(b) Nonnegativity: R(r) ≥ 0 for any r ≥ 0.
(c) Compact support: R(r) = 0 for ∀r > 1;
(d) Nondegeneracy: ∃δ0 > 0 so that R(r) ≥ δ0 for 0 ≤ r ≤ 1

2 .

Remark 5.1. The assumption on the kernel function is very mild. The compact
support assumption can be relaxed to exponentially decay, like Gaussian kernel. In
the nondegeneracy assumption, 1/2 may be replaced by a positive number θ0 with
0 < θ0 < 1. Similar assumptions on the kernel function is also used in analysis the
nonlocal diffusion problem [9].

Remark 5.2. The assumption that (P, S,V,A) is an h-integral approximation of
(M, ∂M) is very mild. If the points in P and S are independent samples from uniform
distribution on M and ∂M respectively, then V and A can be taken as the constant
vector. From the central limit theorem, (P, S,V,A) is an h-integral approximation
with h is of the order of 1/

√
n.

All the analysis in this paper is under the assumptions in Assumption 5.1 and h, t
are small enough. In the theorems and the proof, without introducing any confusions,
we omit the statement of the assumptions.

To compare the discrete numerical solution with the continuous exact solution,
we interpolate the discrete solution u = (u1, · · · , un) of the problem (5.2) onto the
smooth manifold using following interpolation operator:

(5.4) If (u)(x) =

n
∑

j=1

Rt(x,pj)ujVj −
2t

β

m
∑

j=1

R̄t(x,pj)ujAj + t

n
∑

j=1

R̄t(x,pj)fjVj

n
∑

j=1

Rt(x,pj)Vj

.

where f = [f1, · · · , fn] = [f(p1), · · · , f(pn)]. This interpolation is the natural inter-
polation given by equation (5.2). It is easy to verify that If (u) interpolates u at the
sample points P , i.e., If (u)(pj) = uj for any j. In the analysis, If (u) is used as the
numerical solution of (5.1) instead of the discrete solution u.

Now, we can state the main result.

Theorem 5.2. Let u is the solution to Problem (5.1) with f ∈ C1(M). Set
f = (f(p1), · · · , f(pn)). If the vector u is the solution to the problem (5.2). There
exists constants C, T0 and r0 only depend on M and ∂M, so that for any t ≤ T0,

(5.5) ‖u− If (u)‖H1(M) ≤ C

(

h

t3/2
+ t1/2 + β1/2

)

‖f‖C1(M).

13



as long as h
t3/2

≤ r0 and
√
t

β ≤ r0.

Remark 5.3. The error consists of three parts. β1/2 is the error between the
solution of the Dirichlet problem and the Robin problem.

√
t is the error between the

solution of the Robin problem and corresponding integral equation,

(5.6)
1

t

∫

M
Rt(x,y)(u(x)−u(y))dy+

2

β

∫

∂M
R̄t(x,y)u(y)dτy =

∫

M
f(y)R̄t(x,y)dy.

h
t3/2

is the error between the solution of the integral equation and corresponding discrete
solution.

5.2. Structure of the Proof. The proof consists of three parts. First, we
analyze the error between the Dirichlet problem and the Robin problem, Theorem
5.3. Secondly, the error between the Robin problem and the integral equation is
estimated. The method we use is standard. The local truncation error is analyzed
in Theorem 5.4. The formal derivation in Section 2 shows that the local truncation
error can be split to two terms: interior term and boundary term. Corresponding to
these two terms, we prove the stability results respectively in Theorem 5.5 and 5.6.
Finally, the discrete error of the integral equation is obtained in Theorem 5.7.

First, we show that the solution of the Robin problem converges to the solution
of the Dirichlet problem as the parameter β → 0.

Theorem 5.3. Suppose u is the solution of the Dirichlet problem (5.1) and uβ

is the solution of the Robin problem

(5.7)

{

−∆Mu(x) = f(x), x ∈ M
u(x) + β ∂u

∂n (x) = 0, x ∈ ∂M

then

‖u− uβ‖H1(M) ≤ Cβ1/2‖f‖L2(M).

Proof. Let w = u− uβ , then w satisfies

{

∆Mw = 0, on M,
w + β ∂w

∂n = β ∂u
∂n , on ∂M.

By multiplying w on both sides of the equation and integrating by parts, we can get

0 =

∫

M
w∆Mwdx

= −
∫

M
|∇w|2dx+

∫

∂M
w
∂w

∂n
dτx

= −
∫

M
|∇w|2dx− 1

β

∫

∂M
w2dτx +

∫

∂M
w
∂u

∂n
dτx

≤ −
∫

M
|∇w|2dx− 1

2β

∫

∂M
w2dτx + 2β

∫

∂M

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

2

dτx,

which implies that

∫

M
|∇w|2dx+

1

2β

∫

∂M
w2dτx ≤ 2β

∫

∂M

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

2

dτx.
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Moreover, we have

‖w‖2L2(M) ≤ C

(∫

M
|∇w|2dx+

1

2β

∫

∂M
w2dτx

)

≤ Cβ

∫

∂M

∣

∣

∣

∣

∂u

∂n

∣

∣

∣

∣

2

dτx.

Combining above two inequalities and using the trace theorem, we get

‖u− uβ‖H1(M) ≤ Cβ1/2

∥

∥

∥

∥

∂u

∂n

∥

∥

∥

∥

L2(∂M)

≤ Cβ1/2‖u‖H2(M).

The proof is complete using that

‖u‖H2(M) ≤ C‖f‖L2(M).

Now, we turn to prove the solution of the integral equation converges to the
solution of the Robin problem (5.7) as h, t go to 0. To simplify the notation, we
introduce an integral operator

Ktu(x) =
1

t

∫

M
Rt(x,y)(u(x)− u(y))dy +

2

β

∫

∂M
R̄t(x,y)u(y)dτy.(5.8)

First, we estimate the local truncation error between the integral equation (5.6)
and the Robin problem (5.7).

Theorem 5.4 (Local truncation error in the integral approximation). Let u(x)
be the solution of the problem (5.1) and ut(x) be the solution of the corresponding
integral equation (5.6). Let

Ibd =

d
∑

j=1

∫

∂M
nj(y)(x− y) · ∇(∇ju(y))R̄t(x,y)p(y)dτy,(5.9)

and

Iin = Kt(u− ut)− Ibd.

where n(y) = (n1(y), · · · , nd(y)) is the out normal vector of ∂M at y, ∇j is the jth
component of gradient ∇.

If u ∈ H3(M), then there exists constants C, T0 depending only on M and p(x),
so that,

‖Iin‖L2(M) ≤ Ct1/2‖u‖H3(M), ‖∇Iin‖L2(M) ≤ C‖u‖H3(M),(5.10)

as long as t ≤ T0. This theorem is essentially a special case with constant coefficients
of Theorem 3.5 in [13]. The local truncation error has two terms, Iin and Ibd, cor-
responding to interior error and boundary error respectively. To get the global error
estimate, we need to establish stability for these two terms.

Theorem 5.5 (Interior stability). Let u(x) solves following equation with r ∈
H1(M)

Ktu = r.

Then, there exist constants C, T0, r0 > 0 independent on t, such that

‖u‖H1(M) ≤ C

(

‖r‖L2(M) +
t√
β
‖r‖H1(M)

)

,
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as long as t ≤ T0 and
√
t

β ≤ r0.

Theorem 5.6 (Boundary stability). Let u(x) solves the integral equation

Ktu(x) =

∫

∂M
b(y) · (x− y)R̄t(x,y)dτy.

There exist constant C > 0, T0 > 0 independent on t, such that

‖u‖H1(M) ≤ C
√
t ‖b‖H1(M).

as long as t ≤ T0.
To complete the proof, we bound the discrete error of the integral equation (5.6).
Theorem 5.7 (Discrete error of the integral equation). Let ut(x) be the solution

of the problem (5.6) and u be the solution of the problem (5.2). If f ∈ C1(M) , then
there exists constants C, T0 depending only on M, so that

‖Kt (Ifu− ut) ‖L2(M) ≤
Ch

t3/2
‖f‖C1(M),(5.11)

‖∇Kt (Ifu− ut) ‖L2(M) ≤
Ch

t2
‖f‖C1(M).(5.12)

as long as t ≤ T0 and h√
t
≤ T0.

Theorem 5.2 is an easy corollary from Theorems 5.3, Theorems 5.5, 5.7, 5.4 and
5.6. The detailed proof is omitted here.

Theorem 5.4 has been proved in [13]. In the appendix, we prove Theorem 5.5,
5.7 and 5.6 respectively.

6. Discussion and Future Work. In this paper, we applied the point integral
method to solve the harmonic extension problem. We found that the graph Laplacian
has inconsistent problem since one important boundary term is dropped. The point
integral method gives a consistent discretization for the harmonic extension. We
compared the performance of the point integral method with that of graph Laplacian
in the application of semi-supervised learning and image recovery. In the future, we
will test this method on more datasets and find different applications of harmonic
extension.

We also prove the convergence of the point integral method for Laplace-Beltrami
equation on manifolds with the Dirichlet boundary. In point integral method, the
Dirichlet boundary can not be enforced directly. In this paper, we use Robin boundary
to approximate the Dirichlet boundary and use point integral method to solve the
Poisson equation with Robin boundary condition.

Another way to deal with the Dirichlet boundary condition in point integral
method is using the volume constraint proposed by Du et.al. [8]. The volume con-
straint has been integrated into the point integral method to enforce the Dirichlet
boundary condition and the convergence has been proved [16].

One disadvantage of the point integral method is that the discrete system is
not symmetric. Recently, weighted nonlocal Laplacian (WNLL) was introduced to
solve the harmonic extension problem [17]. This method preserves the symmetry of
the Laplace-Beltrami operator. Consequently, the discrete system is symmetric and
positive definite.

Appendix A. Stability of Kt (Theorem 5.5 and 5.6). In this section, we
will prove Theorem 5.5 and 5.6. Both these two theorems are concerned with the
stability of Kt, which are essential in the convergence analysis.
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To simplify the notation, we introduce an integral operator, Lt,

Ltu(x) =
1

t

∫

M
Rt(x,y)(u(x)− u(y))dy,(A.1)

In the proof, we need two lemmas which have been proved in [19].
Lemma A.1. For any function u ∈ L2(M), there exists a constant C > 0

independent on t and u, such that

〈u, Ltu〉M ≥ C

∫

M
|∇v|2dx

where 〈f, g〉M =
∫

M f(x)g(x)dx for any f, g ∈ L2(M), and

v(x) =
Ct

wt(x)

∫

M
R

( |x− y|2
4t

)

u(y)dy,(A.2)

and wt(x) = Ct

∫

M R
(

|x−y|2
4t

)

dy.

Lemma A.2. If t is small enough, then for any function u ∈ L2(M), there exists
a constant C > 0 independent on t and u, such that

∫

M

∫

M
R

( |x− y|2
32t

)

(u(x)− u(y))2dxdy ≤ C

∫

M

∫

M
R

( |x− y|2
4t

)

(u(x)− u(y))2dxdy.

A.1. Stability of Kt for interior term (Theorem 5.5). Using Lemma A.1,
we have
(A.3)

‖∇v‖2L2(M) ≤ C 〈u, Ltu〉 =
∫

M
u(x)r(x)dx− 2

β

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx.

where v is the same as defined in Lemma A.1. We control the second term on the
right hand side of (A.3) as follows.

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M

(

R̄t(x,y)−
w̄t(y)

wt(y)
Rt(x,y)

)

u(y)dτy

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂M
u(y)

(∫

M

(

R̄t(x,y)−
w̄t(y)

wt(y)
Rt(x,y)

)

u(x)dx

)

dτy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂M

1

wt(y)
u(y)

(∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

)

dτy

∣

∣

∣

∣

≤ C‖u‖L2(∂M)

(

∫

∂M

(∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

)2

dτy

)1/2

,

where w̄t(x) =
∫

M R̄t(x,y)dy. Noticing that

∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

=

∫

M

∫

M
Rt(y, z)R̄t(x,y) (u(x)− u(z)) dxdz,
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we have

∫

∂M

(∫

M

(

wt(y)R̄t(x,y)− w̄t(y)Rt(x,y)
)

u(x)dx

)2

dτy

≤
∫

∂M

(∫

M

∫

M
Rt(y, z)R̄t(x,y) (u(x)− u(z)) dxdz

)2

dτy

≤
∫

∂M

(∫

M

∫

M
Rt(y, z)R̄t(x,y)dxdz

)(∫

M

∫

M
Rt(y, z)R̄t(x,y) (u(x)− u(z))

2
dxdz

)

dτy

≤ C

(∫

M

∫

M

(∫

∂M
Rt(y, z)R̄t(x,y)dτy

)

(u(x)− u(z))
2
dxdz

)

= C

(∫

M

∫

M
Q(x, z) (u(x)− u(z))

2
dxdz

)

,

where

Q(x, z) =

∫

∂M
Rt(y, z)R̄t(x,y)dτy.

If ‖x− z‖ ≥ 4
√
t, for any y ∈ ∂M,

max{‖y − z‖, ‖x− y‖} ≥ 1

2
‖x− z‖ ≥ 2

√
t.

Since the supports of R and R̄ are both [0, 1), for any y ∈ ∂M,

Rt(y, z)R̄t(x,y) = 0

which implies that

Q(x, z) = 0 ≤ CCt√
t
R

(‖x− z‖2
32t

)

.

If ‖x− z‖ < 4
√
t, using the nondegeneracy assumption of the kernel function R,

R

(‖x− z‖2
32t

)

≥ δ0.

On the other hand, simple scaling calculation shows that |Q(x, z)| ≤ CCt/
√
t. Then,

we obtain

|Q(x, z)| ≤ CCt

δ0
√
t
R

(‖x− z‖2
32t

)

.

By absorbing constant δ0 in C, for any x,y ∈ M,

|Q(x, z)| ≤ CCt√
t
R

(‖x− z‖2
32t

)

.
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Based on above estimate of Q(x, z), we get,

∣

∣

∣

∣

(∫

M

∫

M
Q(x, z) (u(x)− u(z))

2
dxdz

)∣

∣

∣

∣

(A.4)

≤
∣

∣

∣

∣

C√
t

(∫

M

∫

M
CtR

(‖x− z‖2
32t

)

(u(x)− u(z))
2
dxdz

)∣

∣

∣

∣

≤
∣

∣

∣

∣

C√
t

(∫

M

∫

M
CtR

(‖x− z‖2
4t

)

(u(x)− u(z))
2
dxdz

)∣

∣

∣

∣

=
C√
t

∫

M

∫

M
Rt(x, z) (u(x)− u(z))

2
dxdz

The first inequality comes from the estimate of Q(x, z). Lemma A.2 gives second
inequality.

Recall that u satisfies an integral equation

1

t

∫

M
Rt(x,y)(u(x)− u(y))dy +

2

β

∫

∂M
R̄t(x,y)u(y)dτy = r(x).

Multiplying u(x) on both sides and taking integral over M,

∫

M
u(x)

∫

M
Rt(x,y)(u(x)− u(y))dydx = t

∫

M
r(x)u(x)dx+

2t

β

∫

M
u(x)

∫

∂M
R̄t(x,y)u(y)dτydx.

(A.5)

Notice that
∫

M
u(x)

∫

M
Rt(x,y)(u(x)− u(y))dydx(A.6)

=−
∫

M
u(y)

∫

M
Rt(x,y)(u(x)− u(y))dxdy

=
1

2

∫

M

∫

M
Rt(x,y)(u(x)− u(y))2dydx

(A.4), (A.5) and (A.6) give that

∣

∣

∣

∣

(∫

M

∫

M
Q(x, z) (u(x)− u(z))

2
dxdz

)∣

∣

∣

∣

(A.7)

≤ C
√
t

(∣

∣

∣

∣

∫

M
u(x)r(x)dx

∣

∣

∣

∣

+
1

β

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

∣

∣

∣

∣

)

≤ C
√
t‖u‖L2(M)‖r‖L2(M) +

C
√
t

β

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

∣

∣

∣

∣

.

On the other hand,

∫

M
u(x)

(∫

∂M

w̄t(y)

wt(y)
Rt(x,y)u(y)τy

)

dx

=

∫

∂M

w̄t(y)

wt(y)
u(y)

(∫

M
Rt(x,y)(u(x)− u(y))dx

)

dτy +

∫

∂M
w̄t(y)u

2(y)dτy

=

∫

∂M
w̄t(y)u(y) (v(y)− u(y)) dτy +

∫

∂M
w̄t(y)u

2(y)dτy,
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where v is the same as defined in (A.2). Since u solves Ktu = r(x), we have

wt(x)u(x) = wt(x)v(x)−
2t

β

∫

∂M
Rt(x,y)u(y)dτy − t r(x).(A.8)

Then, we obtain

∫

∂M
w̄t(y)u(y) (v(y)− u(y)) dτy

=

∫

∂M

w̄t(y)

wt(y)
u(y)

(

2t

β

∫

∂M
Rt(x,y)u(x)dτx − t r(y)

)

dτy

≤ C
√
t

β
‖u‖2L2(∂M) + Ct‖u‖L2(∂M)‖r‖L2(∂M)

≤ C
√
t

β
‖u‖2L2(∂M) + Ct‖u‖L2(∂M)‖r‖H1(M).

Combining above estimates together, we have

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)τy

)

dx

≥
∫

∂M
w̄t(y)u

2(y)dτy − C
√
t

β
‖u‖2L2(∂M) − Ct‖u‖L2(∂M)‖r‖H1(M)

−C
√
t‖u‖L2(M)‖r‖L2(M) −

C
√
t

β

∣

∣

∣

∣

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

∣

∣

∣

∣

.

We can choose
√
t

β small enough such that C
√
t

β ≤ min{ 1
2 ,

wmin

6 } with wmin = minx∈M wt(x),
which gives us

∫

M
u(x)

(∫

∂M
R̄t(x,y)u(y)dτy

)

dx

≥ 2

3

∫

∂M
w̄t(y)u

2(y)dτy − C
√
t

β
‖u‖2L2(∂M) − Ct‖u‖L2(∂M)‖r‖H1(M) − C

√
t‖u‖L2(M)‖r‖L2(M)

≥ wmin

2
‖u‖2L2(∂M) − Ct‖u‖L2(∂M)‖r‖H1(M) − C

√
t‖u‖L2(M)‖r‖L2(M)

≥ wmin

4
‖u‖2L2(∂M) − Ct2‖r‖2H1(M) − C

√
t‖u‖L2(M)‖r‖L2(M)

Substituting the above estimate to the first inequality (A.3), we obtain

‖∇v‖L2(M) +
wmin

4β
‖u‖2L2(∂M)(A.9)

≤ −C

∫

M
u(x)r(x)dx+

Ct2

β
‖r‖2H1(M) +

C
√
t

β
‖u‖L2(M)‖r‖L2(M)

≤ C‖u‖L2(M)‖r‖L2(M) +
Ct2

β
‖r‖2H1(M).

Here we require that
√
t

β is bounded by a constant independent on β and t. Now,
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using the representation of u given in (A.8), we obtain

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

≤ C‖∇v‖2L2(M) +
Ct2

β2

∥

∥

∥

∥

∇
(

1

wt(x)

∫

∂M
Rt(x,y)u(y)dτy

)∥

∥

∥

∥

2

L2(M)

+Ct2
∥

∥

∥

∥

∇
(

r(x)

wt(x)

)∥

∥

∥

∥

2

L2(M)

+
wmin

8β
‖u‖2L2(∂M)

≤ C‖∇v‖2L2(M) +

(

C
√
t

β2
+

wmin

8β

)

‖u‖2L2(∂M) + Ct‖r‖2L2(M) + Ct2‖r‖2H1(M)

≤ C‖∇v‖2L2(M) +
wmin

4β
‖u‖2L2(∂M) + Ct‖r‖2L2(M) + Ct2‖r‖2H1(M)

≤ C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) +
Ct2

β
‖r‖2H1(M).

Here we require that C
√
t

β ≤ wmin

8 in the third inequality. Furthermore, we have

‖u‖2L2(M) ≤ C

(

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

)

≤ C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) +
Ct2

β
‖r‖2H1(M)

≤ 1

2
‖u‖2L2(M) + C‖r‖2L2(M) +

Ct2

β
‖r‖2H1(M),

which implies that

‖u‖L2(M) ≤ C

(

‖r‖L2(M) +
t√
β
‖r‖H1(M)

)

.

Finally, we obtain

‖∇u‖2L2(M) ≤ C‖u‖L2(M)‖r‖L2(M) +
Ct2

β
‖r‖2H1(M)

≤ C

(

‖r‖L2(M) +
t√
β
‖r‖H1(M)

)2

,

which completes the proof.

A.2. Stability of Kt for boundary term (Theorem 5.6). First, we denote

r(x) =

∫

∂M
b(y) · (x− y)R̄t(x,y)dτy.

The key point of the proof is to show that
∣

∣

∣

∣

∫

M
u(x)r(x)dx

∣

∣

∣

∣

≤ C
√
t ‖b‖H1(M)‖u‖H1(M).(A.10)

Direct calculation gives that

|2t∇ ¯̄Rt(x,y)− (x− y)R̄t(x,y)| ≤ C|x− y|2R̄t(x,y),
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where ¯̄Rt(x,y) = Ct
¯̄R
(

‖x−y‖2

4t

)

and ¯̄R(r) =
∫∞
r

R̄(s)ds. This implies that

∣

∣

∣

∣

∫

M
u(x)

∫

∂M
b(y)

(

(x− y)R̄t(x,y) + 2t∇ ¯̄Rt(x,y)
)

dτydx

∣

∣

∣

∣

(A.11)

≤C

∫

M
|u(x)|

∫

∂M
|b(y)||x− y|2R̄t(x,y)dτydx

≤Ct‖b‖L2(∂M)

(∫

∂M

(∫

M
R̄t(x,y)dx

)(∫

M
|u(x)|2R̄t(x,y)dx

)

dτy

)1/2

≤Ct‖b‖H1(M)

(∫

M
|u(x)|2

(∫

∂M
R̄t(x,y)dτy

)

dx

)1/2

≤Ct3/4‖b‖H1(M)‖u‖L2(M).

On the other hand, using the Gauss integral formula, we have

∫

M
u(x)

∫

∂M
b(y) · ∇ ¯̄Rt(x,y)dτydx(A.12)

=

∫

∂M

∫

M
u(x)Tx(b(y)) · ∇ ¯̄Rt(x,y)dxdτy

=

∫

∂M

∫

∂M
n(x) · Tx(b(y))u(x)

¯̄Rt(x,y)dτxdτy

−
∫

∂M

∫

M
divx[u(x)Tx(b(y))]

¯̄Rt(x,y)dxdτy.

Here Tx is the projection operator to the tangent space on x. To get the first equality,
we use the fact that ∇ ¯̄Rt(x,y) belongs to the tangent space on x, such that b(y) ·
∇ ¯̄Rt(x,y) = Tx(b(y)) · ∇ ¯̄Rt(x,y) and n(x) · Tx(b(y)) = n(x) · b(y) where n(x) is
the out normal of ∂M at x ∈ ∂M.

For the first term, we have

∣

∣

∣

∣

∫

∂M

∫

∂M
n(x) · Tx(b(y))u(x)

¯̄Rt(x,y)dτxdτy

∣

∣

∣

∣

(A.13)

=

∣

∣

∣

∣

∫

∂M

∫

∂M
n(x) · b(y)u(x) ¯̄Rt(x,y)dτxdτy

∣

∣

∣

∣

≤C‖b‖L2(∂M)

(

∫

∂M

(∫

∂M
|u(x)| ¯̄Rt(x,y)dτx

)2

dτy

)1/2

≤C‖b‖H1(M)

(∫

∂M

(∫

∂M
¯̄Rt(x,y)dτx

)(∫

∂M
|u(x)|2 ¯̄Rt(x,y)dτx

)

dτy

)1/2

≤Ct−1/2 ‖b‖H1(M)‖u‖L2(∂M) ≤ Ct−1/2 ‖b‖H1(M)‖u‖H1(M).

We can also bound the second term on the right hand side of (A.12). By using the
assumption that M ∈ C∞, we have

|divx[u(x)Tx(b(y))]|
≤|∇u(x)||Tx(b(y))|||+ |u(x)||divx[Tx(b(y))]|||+ |∇||u(x)Tx(b(y))|
≤C(|∇u(x)|+ |u(x)|)|b(y)|
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where the constant C depends on the curvature of the manifold M.
Then, we have

∣

∣

∣

∣

∫

∂M

∫

M
divx[u(x)Tx(b(y))]

¯̄Rt(x,y)dxdτy

∣

∣

∣

∣

(A.14)

≤ C

∫

∂M
b(y)

∫

M
(|∇u(x)|+ |u(x)|) ¯̄Rt(x,y)dxdτy

≤ C‖b‖L2(∂M)

(∫

M
(|∇u(x)|2 + |u(x)|2)

(∫

∂M
¯̄Rt(x,y)dτy

)

dx

)1/2

≤ Ct−1/4 ‖b‖H1(M)‖u‖H1(M).

Then, the inequality (A.10) is obtained from (A.11), (A.12), (A.13) and (A.14).
Following the proof of Theorem 5.5, in (A.7) and (A.9), we bound

∣

∣

∫

M u(x)r(x)dx
∣

∣

by C
√
t ‖b‖H1(M)‖u‖H1(M), which implies that

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

≤ C
√
t ‖b‖H1(M)‖u‖H1(M) + Ct‖r‖2L2(M) +

Ct2

β
‖r‖2H1(M)

≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + t

)

where we use the estimates that

‖r(x)‖L2(M) ≤ Ct1/4‖b‖H1(M),

‖r(x)‖H1(M) ≤ Ct−1/4‖b‖H1(M).

Then, using the fact that

‖u‖2L2(M) ≤ C

(

‖∇u‖2L2(M) +
wmin

8β
‖u‖2L2(∂M)

)

,

we have

‖u‖2H1(M) ≤ C‖b‖H1(M)

(√
t‖u‖H1(M) + t

)

,

which completes the proof.

Appendix B. Error analysis of the discretization (Theorem 5.7). In this
section, we estimate the discretization error introduced by approximating the integrals
in (5.6), that is to prove Theorem 5.7. To simplify the notation, we introduce two
intermediate operators defined as follows,

Lt,hu(x) =
1

t

n
∑

j=1

Rt(x,pj)(u(x)− u(pj))Vj ,(B.1)

Kt,hu(x) =
1

t

n
∑

j=1

Rt(x,pj)(u(x)− u(pj))Vj +
2

β

m
∑

j=1

R̄t(x,pj)u(pj)Aj .(B.2)

If ut,h = If (u) with u satisfying Equation (5.2). One can verify that following equation
is satisfied,

Kt,hut,h(x) =

n
∑

j=1

R̄t(x,pj)f(pj)Vj .(B.3)
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The following lemma is needed for proving Theorem 5.7. Its proof is deferred to
appendix.

Lemma B.1. Suppose u = (u1, · · · , un)
t satisfies equation (5.2), there exist con-

stants C, T0, r0 only depend on M and ∂M, such that

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖If (u)‖H1(M) + C
√
h t3/4‖f‖∞,

as long as t ≤ T0,
√
t

β ≤ r0,
h

t3/2
≤ r0.

Proof. of Theorem 5.7

Denote

ut,h(x) = If (u) =
1

wt,h(x)





n
∑

j=1

Rt(x,pj)ujVj −
2t

β

m
∑

j=1

R̄t(x,pj)ujAj + t
n
∑

j=1

R̄t(x,pj)fjVj



 ,

where u = (u1, · · · , uN )t solves Equation (5.2), fj = f(pj) and wt,h(x) =
∑n

j=1 Rt(x,pj)Vj .
For convenience, we set

at,h(x) =
1

wt,h(x)

n
∑

j=1

Rt(x,pj)ujVj ,

ct,h(x) =
t

wt,h(x)

n
∑

j=1

R̄t(x,pj)f(pj)Vj ,

dt,h(x) =− 2t

βwt,h(x)

m
∑

j=1

R̄t(x,pj)ujAj .

Next we upper bound the approximation error Kt(ut,h)−Kt,h(ut,h). Since ut,h =
at,h + ct,h + dt,h, we only need to upper bound the approximation error for at,h, ct,h
and dt,h separately. For ct,h,

|(Ktct,h −Kt,hct,h) (x)|

≤ 1

t
|ct,h(x)|

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)dy −

n
∑

j=1

Rt(x,pj)Vj

∣

∣

∣

∣

∣

∣

+
1

t

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)ct,h(y)dy −

n
∑

j=1

Rt(x,pj)ct,h(pj)Vj

∣

∣

∣

∣

∣

∣

+
2

β

∣

∣

∣

∣

∣

∣

∫

∂M
R̄t(x,y)ct,h(y)dτy −

m
∑

j=1

R̄t(x,pj)ct,h(pj)Aj

∣

∣

∣

∣

∣

∣

≤ Ch

t3/2
|ct,h(x)|+

Ch

t3/2
‖ct,h‖∞ +

Ch

t
‖∇ct,h‖∞ +

Ch

β

(

t−1‖ct,h‖∞ + t−1/2‖∇ct,h‖∞
)

≤ Ch√
t

(

1 +

√
t

β

)

‖f‖∞.
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Now we upper bound ‖Ktat,h −Kt,hat,h‖L2(M). First, we have

∫

M
(at,h(x))

2

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)dy −

n
∑

j=1

Rt(x,pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.4)

≤ Ch2

t

∫

M





1

wt,h(x)

n
∑

j=1

Rt(x,pj)ujVj





2

dx

≤ Ch2

t

∫

M





n
∑

j=1

Rt(x,pj)u
2
jVj









n
∑

j=1

Rt(x,pj)Vj



 dx

≤ Ch2

t





n
∑

j=1

u2
jVj

∫

M
Rt(x,pj)dx



 ≤ Ch2

t

n
∑

j=1

u2
jVj .

Let

K1 = Ct

∫

M

1

wt,h(y)
R

( |x− y|2
4t

)

R

( |pi − y|2
4t

)

dy

− Ct

n
∑

j=1

1

wt,h(pj)
R

( |x− pj |2
4t

)

R

( |pi − pj |2
4t

)

Vj .

We have |K1| < Ch
t1/2

for some constant C independent of t. In addition, notice that
only when |x− pi|2 ≤ 16t is K1 6= 0, which implies

|K1| ≤
1

δ0
|K1|R

( |x− pi|2
32t

)

.

Then we have

∫

M

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)at,h(y)dy −

n
∑

j=1

Rt(x,pj)at,h(pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.5)

=

∫

M

(

n
∑

i=1

CtuiViK1

)2

dx

≤ Ch2

t

∫

M

(

n
∑

i=1

Ct|ui|ViR

( |x− pi|2
32t

)

)2

dx

≤ Ch2

t

∫

M

(

n
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iVi

)(

n
∑

i=1

CtR

( |x− pi|2
32t

)

Vi

)

dx

≤ Ch2

t

n
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iVi

)

)

≤ Ch2

t

(

n
∑

i=1

u2
iVi

)

.

Let

K2 = Ct

∫

∂M

1

wt,h(y)
R̄

( |x− y|2
4t

)

R

( |pi − y|2
4t

)

dτy

− Ct

m
∑

j=1

1

wt,h(pj)
R̄

( |x− pj |2
4t

)

R

( |pi − pj |2
4t

)

Aj .

25



We have |K2| < Ch
t for some constant C independent of t. In addition, notice that

only when |x− pi|2 ≤ 16t is K2 6= 0, which implies

|K2| ≤
1

δ0
|K2|R

( |x− pi|2
32t

)

.

Then

∫

M

∣

∣

∣

∣

∣

∣

∫

∂M
R̄t(x,y)at,h(y)dτy −

m
∑

j=1

R̄t(x,pj)at,h(pj)Aj

∣

∣

∣

∣

∣

∣

2

dx(B.6)

=

∫

M

(

n
∑

i=1

CtuiViK2

)2

dx

≤ Ch2

t2

∫

M

(

n
∑

i=1

Ct|ui|ViR

( |x− pi|2
32t

)

)2

dx

≤ Ch2

t2

∫

M

(

n
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iVi

)(

n
∑

i=1

CtR

( |x− pi|2
32t

)

Vi

)

dx

≤ Ch2

t2

n
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iVi

)

)

≤ Ch2

t2

(

n
∑

i=1

u2
iVi

)

.

Combining Equation (B.4), (B.5) and (B.6),

‖Ktat,h −Kt,hat,h‖L2(M) ≤
Ch

t3/2

(

1 +

√
t

β

)

(

n
∑

i=1

u2
iVi

)1/2

Now we upper bound ‖Ktdt,h −Kt,hdt,h‖L2
. We have

∫

M
(dt,h(x))

2

∣

∣

∣

∣

∣

∣

∫

M
R̄t(x,y)dτy −

n
∑

j=1

R̄t(x,pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.7)

≤ Ch2

t2

∫

M
(dt,h(x))

2
dx

≤ Ch2t

β2

∫

M





1

wt,h(x)

m
∑

j=1

R̄t(x,pj)ujAj





2

dx

≤ Ch2t

β2

∫

M





m
∑

j=1

R̄t(x,pj)u
2
jAj









m
∑

j=1

R̄t(x,pj)Aj



 dx

≤ Ch2
√
t

β2





m
∑

j=1

u2
jAj

∫

M
R̄t(x,pj)dx



 ≤ Ch2
√
t

β2

m
∑

j=1

u2
jAj .

Let

K3 = Ct

∫

M

1

wt,h(y)
R

( |x− y|2
4t

)

R̄

( |pi − y|2
4t

)

dy

− Ct

n
∑

j=1

1

wt,h(pj)
R

( |x− pj |2
4t

)

R̄

( |pi − pj |2
4t

)

Vj .
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We have |K3| < Ch
t1/2

for some constant K3 independent of t. In addition, notice that
only when |x− pi|2 ≤ 16t is K3 6= 0, which implies

|K3| ≤
1

δ0
|C|R

( |x− pi|2
4t

)

.

Then we have

∫

M

∣

∣

∣

∣

∣

∣

∫

M
Rt(x,y)dt,h(y)dy −

n
∑

j=1

Rt(x,pj)dt,h(pj)Vj

∣

∣

∣

∣

∣

∣

2

dx(B.8)

=
4t2

β2

∫

M

(

m
∑

i=1

CtuiAiK3

)2

dx

≤ Ch2t

β2

∫

M

(

m
∑

i=1

Ct|ui|AiR

( |x− pi|2
32t

)

)2

dx

≤ Ch2t

β2

∫

M

(

m
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iAi

)(

m
∑

i=1

CtR

( |x− pi|2
32t

)

Ai

)

dx

≤ Ch2
√
t

β2

m
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iAi

)

)

≤ Ch2
√
t

β2

(

m
∑

i=1

u2
iAi

)

.

Let

K4 = Ct

∫

∂M

1

wt,h(y)
R̄

( |x− y|2
4t

)

R̄

( |pi − y|2
4t

)

dτy

− Ct

m
∑

j=1

1

wt,h(pj)
R̄

( |x− pj |2
4t

)

R̄

( |pi − pj |2
4t

)

Aj .

We have |K4| < Ch
t for some constant C independent of t. In addition, notice that

only when |x− pi|2 ≤ 16t is K4 6= 0, which implies

|K4| ≤
1

δ0
|K4|R

( |x− pi|2
32t

)

.

and

∫

M

∣

∣

∣

∣

∣

∣

∫

∂M
R̄t(x,y)dt,h(y)dτy −

∑

j

R̄t(x,pj)dt,h(pj)Aj

∣

∣

∣

∣

∣

∣

2

dx(B.9)

=
4t2

β2

∫

M

(

m
∑

i=1

CtuiAiK4

)2

dx

≤ Ch2

β2

∫

M

(

m
∑

i=1

Ct|ui|AiR

( |x− pi|2
32t

)

)2

dx

≤ Ch2

β2

∫

M

(

m
∑

i=1

CtR

( |x− pi|2
32t

)

u2
iAi

)(

m
∑

i=1

CtR

( |x− pi|2
32t

)

Ai

)

dx

≤ Ch2

β2
√
t

m
∑

i=1

(∫

M
CtR

( |x− pi|2
32t

)

dx
(

u2
iAi

)

)

≤ Ch2

β2
√
t

(

m
∑

i=1

u2
iAi

)

.
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Combining Equation (B.7), (B.8) and (B.9),

‖Ktdt,h −Kt,hdt,h‖L2(M) ≤
Ch

βt3/4

(

1 +

√
t

β

)

(

m
∑

i=1

u2
iAi

)1/2

Now assembling the parts together, we have the following upper bound.

‖Ktut,h −Kt,hut,h‖L2(M)(B.10)

≤ Ch

t3/2



‖g‖∞ + t‖f‖∞ +

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2


 .

At the same time, since ut solves Ktut =
∫

M R̄t(x,y)f(y)dy and ut,h solves (B.3)
respectively, we have

‖Kt(ut)−Kt,h(ut,h)‖L2(M)(B.11)

=

(∫

M
((Ktut −Kt,hut,h) (x))

2
dx

)1/2

≤







∫

M





∫

M
R̄t(x,y)f(y)−

n
∑

j=1

R̄t(x,pj)f(pj)Vj





2

dx







1/2

≤ Ch

t1/2
‖f‖∞.

From Equation (B.10) and (B.11), we get
(B.12)

‖Ktut − Ltut,h‖L2(M) ≤
Ch

t3/2





(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

+ t‖f‖∞



 .

Using the similar techniques, we can get the upper bound of ‖∇(Ktut−Ltut,h)‖L2(M)

as following.
(B.13)

‖∇ (Ktut − Ltut,h) ‖L2(M) ≤
Ch

t2



t‖f‖C1(M) +

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2


 .

In the remaining of the proof, we only need to get a prior estimate of
(
∑n

i=1 u
2
iVi

)1/2
+

t1/4
(
∑m

l=1 u
2
lAl

)1/2
. First, using the estimate (B.12) and (B.13) and the Theorem

5.5, we have

‖ut,h‖H1(M) ≤
Ch

t3/2





(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

+ t‖f‖∞





+C‖Ktut‖L2(M) + Ct3/4‖Ktut‖H1(M).(B.14)

Using the relation that Ktut = −
∫

M R̄t(x,y)f(y)y, it is easy to get that

‖Ktut‖L2(M) ≤ C‖f‖∞,(B.15)

‖∇(Ktut)‖L2(M) ≤
C

t1/2
‖f‖∞.(B.16)
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Substituting above estimates in (B.14), we have

‖ut,h‖H1(M) ≤
Ch

t3/2





(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

+ t‖f‖∞



+ C‖f‖∞.

Using Lemma B.1, we have

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖ut,h‖H1(M) + C
√
h
(

t3/4‖f‖∞ + ‖g‖∞
)

≤ Ch

t3/2



t‖f‖∞ +

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2




+C‖f‖∞ + C
√
h t3/4‖f‖∞(B.17)

Using the assumption that h
t3/2

is small enough such that Ch
t3/2

≤ 1
2 , we have

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖f‖∞(B.18)

Then the proof is complete by substituting above estimate (B.18) in (B.12) and (B.13).

Appendix C. Proof of Lemma B.1.
Proof. First, denote

ut,h(x) = If (u) =
1

wt,h(x)





n
∑

j=1

Rt(x,pj)ujVj −
2t

β

m
∑

j=1

R̄t(x,pj)ujAj + t

n
∑

j=1

R̄t(x,pj)fjVj



 ,

where fj = f(pj) and wt,h(x) =
∑n

j=1 Rt(x,pj)Vj and u = (u1, · · · , un) solves (5.2).
Let

v1(x) =
1

wt,h(x)

n
∑

j=1

Rt(x,pj)ujVj , and

v2(x) = − 2t

βwt,h(x)

m
∑

j=1

R̄t(x,pj)ujAj , and

v3(x) =
t

wt,h(x)

n
∑

j=1

R̄t(x,pj)fjVj ,

and then ut,h = v1 + v2 + v3 and
∣

∣

∣

∣

∣

∣

‖ut,h‖2L2(M) −
n
∑

j=1

u2
jVj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3
∑

m,m′=1





∫

M
vm(x)vm′(x)dµx −

n
∑

j=1

vm(xj)vm′(xj)Vj





∣

∣

∣

∣

∣

∣

≤
3
∑

m,m′=1

∣

∣

∣

∣

∣

∣

∫

M
vm(x)vm′(x)dµx −

n
∑

j=1

vm(xj)vm′(xj)Vj

∣

∣

∣

∣

∣

∣

.
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We now estimate these six terms in the above summation one by one. First, we
consider the term with m = m′ = 1. Denote

A =

∫

M

Ct

w2
t,h(x)

R

( |x− pi|2
4t

)

R

( |x− pl|2
4t

)

dµx −

n
∑

j=1

Ct

w2
t,h(pj)

R

( |pj − pi|2
4t

)

R

( |pj − pl|2
4t

)

Vj ,

and then |A| ≤ Ch
t1/2

. At the same time, notice that only when |pi − pl|2 < 16t is
A 6= 0. Thus we have

|A| ≤ 1

δ0
|A|R(

|pi − pl|2
32t

),

and

∣

∣

∣

∣

∣

∣

∫

M
v21(x)dµx −

n
∑

j=1

v21(pj)Vj

∣

∣

∣

∣

∣

∣

≤
n
∑

i,l=1

|CtuiulViVl||A|

≤ Ch

t1/2

n
∑

i,l=1

∣

∣

∣

∣

CtR

( |pi − pl|2
32t

)

uiulViVl

∣

∣

∣

∣

≤ Ch

t1/2

n
∑

i=1

(

n
∑

l=1

CtR

( |pi − pl|2
32t

)

Vl

)1/2( n
∑

l=1

CtR

( |pi − pl|2
32t

)

u2
l Vl

)1/2

uiVi

≤ Ch

t1/2

(

n
∑

i=1

n
∑

l=1

CtR

( |pi − pl|2
32t

)

u2
l VlVi

)1/2( n
∑

i=1

u2
iVi

)1/2

.

=
Ch

t1/2

(

n
∑

l=1

u2
l Vl

n
∑

i=1

CtR

( |pi − pl|2
32t

)

Vi

)1/2( n
∑

i=1

u2
iVi

)1/2

≤ Ch

t1/2

n
∑

i=1

u2
iVi.

Using a similar argument, we can obtain the following estimates for the remaining
terms,

∣

∣

∣

∣

∣

∣

∫

M
v1(x)v2(x)dµx −

n
∑

j=1

v1(pj)v2(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht1/4

β

(

n
∑

i=1

u2
iVi

)1/2( m
∑

l=1

u2
lAl

)1/2

,

∣

∣

∣

∣

∣

∣

∫

M
v1(x)v3(x)dµx −

n
∑

j=1

v1(pj)v3(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht1/2

(

n
∑

i=1

u2
iVi

)1/2




n
∑

j=1

f2
j Vj





1/2

,
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∣

∣

∣

∣

∣

∣

∫

M
v22(x)dµx −

n
∑

j=1

v22(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht

β2

m
∑

l=1

u2
lAl, and

∣

∣

∣

∣

∣

∣

∫

M
v2(x)v3(x)dµx −

n
∑

j=1

v2(pj)v3(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht5/4

β

(

m
∑

l=1

u2
lAl

)1/2




n
∑

j=1

f2
j Vj





1/2

, and

∣

∣

∣

∣

∣

∣

∫

M
v23(x)dµx −

n
∑

j=1

v23(pj)Vj

∣

∣

∣

∣

∣

∣

≤ Cht3/2
n
∑

j=1

f2
j Vj .

Assembling all the above estimates together, we obtain
∣

∣

∣

∣

∣

‖ut,h‖2L2(M) −
n
∑

i=1

u2
iVi

∣

∣

∣

∣

∣

≤ Ch

t1/2

(

n
∑

i=1

u2
iVi + t1/2

m
∑

l=1

u2
lAl + t2‖f‖2∞

)

.

Similarly, we have
∣

∣

∣

∣

∣

‖ut,h‖2L2(∂M) −
m
∑

l=1

u2
lAl

∣

∣

∣

∣

∣

≤ Ch

t

(

n
∑

i=1

u2
iVi + t1/2

m
∑

l=1

u2
lAl + t2‖f‖2∞

)

.

Using the assumption that h
t1/2

is small enough such that Ch
t1/2

≤ 1
2 , we obtain

n
∑

i=1

u2
iVi + t1/2

m
∑

l=1

u2
lAl ≤ 2

(

‖ut,h‖2L2(M) + t1/2‖ut,h‖2L2(∂M)

)

+ Ch
(

t3/2‖f‖2∞
)

≤ C‖ut,h‖2H1(M) + Cht3/2‖f‖2∞,

which implies that

(

n
∑

i=1

u2
iVi

)1/2

+ t1/4

(

m
∑

l=1

u2
lAl

)1/2

≤ C‖ut,h‖H1(M) + C
√
h t3/4‖f‖∞.
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