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Abstract

We develop a method searching for quasi-conformal maps from point-cloud surfaces
to Euclidean plane. The maps can be got by directly solving Beltrami equation with
proper boundary condition or solving optimization problem of the variational formu-
lation. The point integral methd (PIM) is used for discretization on point clouds.
Numerical experiments suggest that the method converges as the density of points in-
creases.
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1 Introduction

Conformal and quasi-conformal maps appear in many areas of sciences and engineering,
such as physics, mechanics and computer science. It is well known in the theory of complex
analysis that for two simply-connected domains on the complex plane there is a conformal
map from the one to the other. Conformality means that the map preserves local shapes,
i.e. it maps right angle to right angle and keep the orientation unchanged. The necessary
and sufficient condition for Φ : (x, y) 7→ (u, v) to be conformal is that u and v satisfy the
well-known Cauchy-Riemann equation

{

ux = vy,
uy = −vx,

where (x, y) is the Cartesian coordinates on M and the suffices stand for partial derivatives.
These two equations can be rewritten in a coordinates-independent form

∇u+ J∇v = 0, (1.1)
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where ∇ is the gradient operator on M and J is the conjugate operator. In this case,

∇ =

(

∂x
∂y

)

and J =

(

0 −1
1 0

)

.

From above we can easily see that both u and v are harmonic functions. They satisfy
Laplace equations

{

∆u = 0,
∆v = 0.

(1.2)

For this reason, (u, v) are sometimes called a pair of conjugate harmonic functions. Con-
jugacy means that their stationary points are the same and their gradients are orthogonal
everywhere.

To solve for the conformal map Φ = (u, v) from the Cauchy-Riemann equation, we need
a boundary condition which defines the boundary of the image of Φ, which is a closed curve
in the uv-plane. This can be expressed by (ub, vb), the boundary value of (u, v), as

f(ub, vb) = 0. (1.3)

Generally, this is a nonlinear boundary condition. But we can take a triangular domain in
the uv-plane as the image of Φ. In this case the boundary condition is piecewise linear.

According to the theory of complex analysis, the problem of solving (1.1) with boundary
condition (1.3) has a solution. However, it is not easy to solve (1.1) with (1.3) directly. In
this paper we propose a method to solve (1.1) (1.2) and (1.3) together. We can imagine the
following procedure. If ub is given, and we can solve vb from (1.3) as a function of ub, then
we have two Dirichlet problems for the Laplace equations (1.2). By solving these problems
we get a pair (u, v). We can check how good is this (u, v) as a solution of (1.1). If it is not
good enough, we change ub and do the same thing again. By repeating this procedure, we
may expect to find a ub such that (1.1) is perfectly satisfied. This imaginary procedure can
be realized as an optimization problem. The objective function is

‖∇u+ J∇v‖, (1.4)

and the argument is ub. Here ‖‖ is some norm. The solution of the Cauchy-Riemann
equation is found when the objective function attains its global minimum 0.

If M is a curved surface, the concept of harmonicity and orthogonality can still be
defined. Thus conformality can be generalized to surfaces. Since there is a standard global
coordinate system (u, v) on Euclidean plane R2, any map Φ from a surface M to R

2 can be
seen as two functions u and v on M. Φ is said to be conformal if its components (u, v) is
a pair of conjugate harmonic functions on M. In this case the Cauchy-Riemann equation
(1.1) is still a necessary and sufficient condition of the conformality of Φ. Here the gradient
operator and Laplace operator are associated to the metric of M.

The concept of conformality can be generalized in another way. The classical conformal
map takes infinitesimal circles to infinitesimal circles. If it is allowed to take infinitesimal
circles to infinitesimal ellipses, and the eccentric ratio of the ellipses are bounded, then we
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get a quasi-conformal map. If we consider general quasi-conformal maps on a surface, u
and v also satisfy a system of PDEs, which is the Beltrami equation

A−1 · ∇u+ J · ∇v = 0.

Here A is a second order tensor field on M. If A is the identity, we have a Cauchy-Riemann
equation. The concept of quasi-conformal map appears naturally if we consider conformal
map with respect to a metric that is different from the default one on M. If Φ is conformal
in the new metric, it is quasi-conformal in the default metric. The converse is also true.
Any quasi-conformal map is conformal in some other metric. Therefore, the above u and v
are a pair of conjugate harmonic functions with respect to another metric on the surface.
The derivation and some mathematical details of the Beltrami equation will be presented
in the next section.

The standard conformal map is a particular case of the quasi-conformal map from surface
to plane. The boundary condition can also be defined in general case. The idea of the
method for solving the boundary value problem of quasi-conformal map is the same as
that of conformal map as described above, i.e., reducing the boundary value problem to an
optimization problem.

To discretize the optimization problem on point cloud, we need a numerical method
that is suitable for point cloud data. In [8] the authors developed a numerical method,
the Point Integral Method (PIM), for solving Laplace equation. As introduced above, the
solution of a Cauchy-Riemann equation is a pair of conjugate harmonic functions, which
satisfy Laplace equation. We will see in the next section that the solution of a Beltrami
equation for quasi-conformal map is a pair of functions that satisfy an elliptic equation,
which can also solved by PIM. In the method described in this paper, we need to solve
the Beltrami equation together with the related elliptic equations and boundary conditions.
They are discretized to a linear system of algebraic equations by PIM.

There are many numerical methods for computing conformal or quasi-conformal maps
on meshes, such as [7, 2, 4, 5, 12]. Sometimes it is inconvenient or even difficult to generate
meshes of enough quanlity for numerical algorithms [3, 10]. This is a serious issue when
the geometry of the surface is complicated. Point cloud is a much simpler discretization
method for representing domains and data. In recent years, more and more reseach focused
on solving problems on point clouds [1, 6, 9, 8, 11]. It is natural to develop methods for
solving conformal and quasi-conformal maps on point clouds, which is the motivation of
this work.

The paper is organized in the following way: Section 2 is a brief introduction to quasi-
conformal map, Beltrami equation and its boundary value problem. Here we emphasize
the geometric aspects. Section 3 and Section 4 describe the discretizations of the boundary
value problem by the finite element method (FEM)and the point integral method (PIM)
respectively. In Section 6, several examples are presented to show the convergence and
performance of the PIM algorithm for solving conformal and quasi-conformal maps.

2 Beltrami Equation for Quasi-Conformal Map

In this section, we give an introduction to the theoretical background of the quasi-conformal
map and the Beltrami equation. The readers can also find the relevant contents in textbooks
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on complex analysis, Riemann surfaces, and differential geometry.
Quasi-conformal map w(z) = u(z) +

√
−1v(z) can be defined as the solution of the

complex Beltrami equation

∂w

∂z̄
= µ

∂w

∂z
,

where µ is a given complex function on U , satisfying some boundedness condition. In this
section we will show that from µ we can define a metric C, such that the quasi-conformal
map is conformal with respect to C. Furthermore, we can transform the above complex
equation into a real from

A−1 · ∇u+ J · ∇v = 0,

in which A is explicitly determined by µ. Several other interesting and useful consequences
will also be introduced.

In the following, let M be a surface with a metric G, admitting an orthonormal moving
frame. Here the surface M is not assumed to be embedded in R

3. It could be a part of
any two dimensional manifold. In later sections, we will require that M is embedded in
R
3 and G is induced from the Euclidean inner product 〈·, ·〉 of R3, so that the numerical

algorithms can be applied to solve the Beltrami equation. Suppose C is another metric
which is generally different from the default metric G. Let g be the Euclidean metric on
a plane which is identified with R

2. Re-denote (u, v) by (ua), then the components of g
constructs an identity matrix (δab). We will use a, b, . . . as indices on the plane and A,B, . . .
on M. Einstein’s summation convention is used and all indices run from 1 to 2 without
specifying. All quantities are assume to be smooth.

2.1 Conformal map with respect to a different metric

A map Φ from (M,C) to (R2,g) is said to be conformal with respect to C if the pullback
of g by Φ is pointwisely proportional to C, i.e.,

Φ∗g = hC,

where h is a positive function on M. By definition of g we have

Φ∗g =Φ∗(duadubδab)

=duadubδab.

The d’s in the first line are differentials on R
2, and those in the second line are differentials

on M. Take a moving frame {eA} which is orthonormal with respect to G on M, we have

hCAB =hC(eA, eB)

=dua(eA)du
b(eB)δab

=G(eA,∇ua)G(eB,∇ub)δab

=∇Au
a∇Bu

bδab

=F a
A F b

B δab,
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where ∇ is the gradient operator associated with G and F a
A = ∇Au

a. Use matrix notation
C = (CAB) and F = (F a

A ), the above equation becomes

hC = FF T .

By taking determinants on both sides, we get

h =
detF√
detC

.

Plug this back, we get

detFF−1 =
√
detCF TC−1.

By definition of cofactor of a matrix and symmetry of C, we have

cofF =
√
detCC−1F.

The components of the inverse metric C−1 are usually denoted as (CAB). There are four
equations in the above matrix equation, which are

{

F 2
2 =

√
detCC1AF 1

A ,

−F 2
1 =

√
detCC2AF 1

A ,

{

−F 1
2 =

√
detCC1AF 2

A ,

F 1
1 =

√
detCC2AF 2

A .
(2.1)

The conjugate operator J is defined by a rotation

J · e1 = e2, J · e2 = −e1.

It is easy to verify that the above two pairs of equations are respectively equivalent to two
vector-valued equations

{

−J · ∇u2 = A−1 · ∇u1,
J · ∇u1 = A−1 · ∇u2,

(2.2)

where A is defined by its matrix A, and A−1 =
√
detCC−1. Next we will show that these

two equations are equivalent to each other. As defined above, A is a symmetric matrix with
determinant 1. Write out the components of A−1 and A explicitly,

A−1 =

(

A 1
1 A 2

1

A 1
2 A 2

2

)

, and A =

(

A 2
2 −A 2

1

−A 1
2 A 1

1

)

Also the matrix of the conjugate operator J in the moving frame {eA} is

J =

(

0 −1
1 0

)

.

It is easy to check that AJ = JA−1. This relation is actually independent of choice of
orthonormal moving frame, therefore

A · J = J ·A−1.
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By this relation and the property that J2 = −id, we have

A−1 · ∇u2 = −J2 ·A−1 · ∇u2 = −J ·A · J · ∇u2.

Use the second equation in (2.2), we have

A−1 · ∇u2 = J · ∇u1,

which is exactly the first equation in (2.2). By similar arguments we can derive the second
equation in (2.2) by the first one too. Thus the two vector-valued equations in (2.2) are
equivalent. Without loss of generality, we choose the first one

A−1 · ∇u+ J · ∇v = 0. (2.3)

This is a system of PDEs for (ua) = (u, v), so called Beltrami equation, which characterizes
conformal map with respect to C from surface to Euclidean plane. If we take C = G, then
A = id and (2.3) becomes a system of Riemann-Cauchy equations.

2.2 Conjugate harmonic functions

We are to show that the solution of (2.3) is a pair of harmonic functions on (M,C). We
still take the orthonormal moving frame {eA} and denote its coframe with respect to G as
{ωA}. Let D be the associated covariant differential operator and its connection forms be
ω B
A . That is

dωB = ωA ∧ ω B
A .

Then we have

D∇ua =D(F a
1 e1 + F a

2 e2)

=dF a
1 e1 + F a

1 De1 + dF a
2 e2 + F a

2 De2

=(dF a
1 + F a

2 ω 1
2 )e1 + (dF a

2 + F a
1 ω 2

1 )e2

= : DF a
1 e1 +DF a

2 e2.

Here DF a
1 and DF a

2 are also 1-forms, thus they can be spanned by ωA. Suppose

DF a
A = DBF

a
A ωB.

By Poincaré’s lemma, there is

0 =d2ua

=d(F a
1 ω1 + F a

2 ω2)

=dF a
1 ω1 + F a

1 dω1 + dF a
2 ω2 + F a

2 dω2

=(dF a
1 + F a

2 ω 1
2 )ω1 + (dF a

2 + F a
1 ω 2

1 )ω2

=DF a
1 ω1 +DF a

2 ω2

=(D1F
a

2 −D2F
a

1 )ω1 ∧ ω2.
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Thus we have

D1F
a

2 = D2F
a

1 .

Apply this relation to the two pairs of equations in (2.2), we get

DA(
√
detCCABF a

B ) = 0.

Divide this equation by
√
detC, we find that ua satisfies a Laplace equation

∆Cu
a = 0,

where ∆C is the Laplace-Beltrami operator with respect to metric C. Therefore the so-
lutions (u, v) of Beltrami equations (2.3) is a pair of conjugate harmonic functions with
respect to C. The above Laplace equation can be considered as an elliptic equation in the
default metric G,

∇ · (A−1 · ∇ua) = 0. (2.4)

Here ∇· = div and ∇ = grad are divergence and gradient operators associated with G.

Remark 2.1. We should emphasize that any solution of (2.3) is a solution of (2.4), but
the converse is generally false. The solutions of (2.4) for a = 1, 2 is surely two functions

which are harmonic with respect to C, but in most cases they are not conjugate to each

other, hence is not a solution to (2.3).

2.3 Quasi-conformal map and Beltrami coefficient

The most common form of Beltrami equation is defined in the context of complex analysis.
Let Φ be a map from some open set U ⊂ C to C, and w = Φ(z). Then the classical Beltrami
equation is

∂w

∂z̄
= µ

∂w

∂z
,

where µ is a given complex function on U . The solution of this equation is called a quasi-
conformal map with Beltrami coefficient µ.

In the settings of previous part of this section, we can complexify the surface M. Let
ω = ω1 +

√
−1ω2, and µ = α+

√
−1β. We assign our metric C to be

C = f |ω + µω̄|2,

where the bar denotes complex conjugacy and f is any positive function on M. Plug in the
definitions, we have

C = f
(

((1 + α)2 + β2)(ω1)2 + 4βω1ω2 + ((1− α)2 + β2)(ω2)2
)

,

or in its matrix form in the moving frame {eA}

C = f

(

(1 + α)2 + β2 2β
2β (1− α)2 + β2

)

. (2.5)
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The Euclidean plane can also be complexified. Let w = u+
√
−1v. Suppose

Φ∗dw = w1ω + w2ω̄.

Then for the above choice of the metric C with µ = w2/w1, there is

Φ∗g =|Φ∗dw|2

=|w1|2
∣

∣

∣

∣

ω +
w2

w1
ω̄

∣

∣

∣

∣

2

=
|w1|2
f

C.

This means that the quasi-conformal map with the Beltrami coefficient µ is a conformal
map with respect to the metric C, and C is uniquely determined by µ up to a dilation
(multiplying a positive function). For this reason, we can compute a quasi-conformal map
by means of a conformal map.

Conversely, if we are given a metric C and a conformal map Φ with respect to it, it is
natural to ask that which quasi-conformal map it stands for, and what is µ. The answer is
straightforward. We only need to solve equations (2.5) for α, β (real and imaginary parts
of µ) from components of C in an orthonormal moving frame. The explicit formula for µ is

µ =
C11 − C22 + 2

√
−1C12

C11 + C22 + 2
√
detC

.

Any quasi-conformal map sends infinitesimal ellipses on M to infinitesimal circles on the
plane. In fact, a quasi-conformal map Φ can be characterized by the shapes and orientations
of the ellipses, up to dilation. These informations are all encoded in the Beltrami coefficient
µ, or equivalently, the metric C. For C given by (2.5) in the orthonormal moving frame, it
is not difficult to find the eigenvalues and eigenvectors of C to be

c1,2 =
(

1±
√

α2 + β2
)2

, θB = ωAQ B
A ,

where the transformation matrix is

Q =
1

√

2(α2 + β2 + α
√

α2 + β2)

(

α+
√

α2 + β2 −β

β α+
√

α2 + β2

)

.

We have omitted the dilation factor f here. {θA} is another orthonormal coframe with
respect to the default metric G. It is also orthogonal with respect to C which can be
spanned in this coframe as

C = c1(θ
1)2 + c2(θ

2)2.

Let {gA} be the orthonormal moving frame dual to {θA} with respect to G. Then the
transformation matrix from {eA} to {gA} is also Q. That is

gB = eAQ
A
B.
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The quasi-conformal map Φ sends a ellipse in the tangent space at each point p ∈ M,
whose semi-major axis is

√
c1g1 and semi-minor axis

√
c2g2 to a circle centered at Φ(p) on

the plane. The function

DΦ =

√

c1
c2

=
1 +

√

α2 + β2

1−
√

α2 + β2
(2.6)

is called local dilatation 1 quotient. If supMDΦ = K, then Φ is called a K-quasi-conformal
map in some literatures.

In summary, a quasi-conformal map Φ = u +
√
−1v with Beltrami coefficient µ from a

surface M to an Euclidean plane is a solution to the Beltrami equation (2.3). And (u, v)
is a pair of conjugate harmonic functions with respect to the metric C defined by µ, which
satisfy Laplace equations (2.4). Therefore we have reduced the problem of finding a quasi-
conformal map to solving a system of PDEs, in which the operator A can be expressed in
the moving frame {eA} as

A =
C√
detC

=
1

1− α2 − β2

(

(1 + α)2 + β2 2β
2β (1− α)2 + β2

)

. (2.7)

Since detA = 1, we have A−1 = cofAT . Obviously, A is just a real equivalence of µ =
α +

√
−1β. In fact it characterize a conformal structure on M. We can think of it as a

metric up to dilation.

Remark 2.2. Assigning a Beltrami coefficient on a surface is more difficult than on a plane.

On a plane there is a standard Cartesian coordinate system, thus a Beltrami coefficient is

just a complex function. On a surface, there is no canonical choice of orthonormal moving

frame. To assign a Beltrami coefficient on a surface, we must assign both the orthonormal

moving frame and the complex function. This difference is not hard to understand, since

assigning a Beltrami coefficient is equivalent to assigning a metric tensor up to dilation.

2.4 Boundary condition

The commonly used Dirichlet and Neumann conditions for second order PDEs are inade-
quate for Beltrami equation. It is well-known that a conformal map between two simple
domains on the plane is uniquely determined if the image of the boundary is given and three
boundary points are fixed. The image of unfixed boundary points are allowed to move freely
along the boundary of target domain. This statement holds for quasiconformal map too,
because any quasi-conformal map is a conformal map in certain metric.

The image of the boundary is a closed curve in the uv-plane, which can be expressed by
an implicit equation

f(ub, vb) = 0, (2.8)

where (ub, vb) is the boundary value of (u, v). Notice that (ub, vb) is the image of all the
boundary points, including the fixed images {(ui, vi)}3i=1 of three boundary points {pi}3i=1.

1We use the word dilation to describe the isotropic deformation, and use dilatation to describe the
anisotropic aspect of a map.
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So the boundary condition can be written as
{

f(u(s), v(s)) = 0, s ∈ ∂M,
(u(pi), v(pi)) = (ui, vi), pi ∈ ∂M, i = 1, 2, 3.

(2.9)

In order to solve the Beltrami equation for a quasiconformal map, we can assign the value of
only three boundary points. At the same time, we need to restrict the image of the rest of
∂M to the boundary of the target domain. This boundary condition is related to the usual
Dirichlet condition in the sense that if one of (u, v) is determined, then the other is also
determined. This relationship is crucial for solving boundary value problems of Beltrami
equations. It will be made more clear in the next part.

The boundary condition (2.9) is generally nonlinear. Hence we need to solve a system of
linear PDEs with nonlinear boundary condition. It should be solved by iterative methods.
When the target domain is a triangle, however, the boundary condition becomes (piecewise)
linear. In this special case the system can be solved in one step. In the following of
this paper, we mainly consider linear problems, i.e., the target domain are triangles. The
nonlinear problems occupies a secondary part.

2.5 Solve linear problems

From above we see that the solution of Beltrami equation is a pair of conjugate functions
who satisfy same elliptic equations. The two functions are harmonic with respect to certain
metric, and the elliptic equations satisfied by them are Laplace equations in that metric.
On the one hand, the Beltrami equation with adequate boundary condition is not easy to
solve while the usual Dirichlet condition is inadequate for it. On the other hand, Laplace
equations with Dirichlet conditions are easy to solve. Since the boundary condition for
Beltrami equation can be related to the Dirichlet condition, the Laplace equations can be
used as a bridge between the Beltrami equation and its boundary condition. In other words,
we can solve Beltrami equation together with the two related Laplace equations.

Let M be a simply-connected surface with boundary. Let R
2 be an Euclidean plane

with standard Cartesian coordinates (u, v). Suppose we are given an orthonormal moving
frame and a complex function µ on M. We want to find a quasi-conformal map Φ from M
to C ∼= R

2, taking µ as its Beltrami coefficient. We can consider the redundant system of
PDEs

∇ · (A−1 · ∇u) = 0, (2.10)

∇ · (A−1 · ∇v) = 0, (2.11)

A−1 · ∇u+ J · ∇v = 0, (2.12)

where A is a positive self-adjoint operator with determinant 1. It acts on tangent vector
fields on M. The components of A in the orthonormal moving frame can be given by (2.7).
Although the Beltrami equation (2.12) implies the Laplace equations (2.10) and (2.11),
we still need them as a bridge between the Beltrami equation (2.12) and its boundary
conditions.

By solving Dirichlet problems of (2.10) and (2.11), we can express (u, v) as

u = T ub, v = T vb, (2.13)
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where (ub, vb) is the boundary value of (u, v). T is a linear operator defined by any solver
of the Dirichlet problem of equation (2.10) or (2.11). It is well-defined since given any
boundary value we can solve the Dirichlet problem and get the solution.

According to the boundary condition (2.9), the boundary values (ub, vb) satisfy an im-
plicit equation

f(ub, vb) = 0. (2.14)

Generally we cannot express vb by ub, vise versa. In the linear case, however, the target
domain Φ(M) is a triangle in the uv plane. For each edge of the triangle, we can express vb
by ub. For example, each point (ub, vb) lying on the segment between (u1, v1) and (u2, v2)
satisfies the linear equation

vb =
v2 − v1
u2 − u1

(ub − u1) + v1.

Similar for the segment between (u2, v2) and (u3, v3) and that between (u3, v3) and (u1, v1).
With more abstract notation, we have

vb = Sub, (2.15)

where S is a piecewise linear operator defined by the triangular boundary of the target
domain. Notice that (ub, vb) contain all the boundary points, including the three points
{pi}3i=1 whose images are fixed as {(ui, vi)}3i=1.

With the help of the operators T and S we can relate the boundary values to the
Beltrami equation. Plug (2.13) and (2.15) into the Beltrami equation (2.12), we have

0 = A−1 · ∇u+ J · ∇v

= A−1 · ∇T ub + J · ∇T vb

= A−1 · ∇T ub + J · ∇T Sub.

So we get an equation for ub:

(A−1 · ∇T + J · ∇T S)ub = 0. (2.16)

This is the equation to discretize and solve. After we get ub, we can get vb by vb = Sub.
Then the quasiconformal map (u, v) is get by solving the Laplace equations (2.10) and (2.11)
with Dirichlet conditions ub and vb respectively.

3 FEM Discretization

Although our main concern in this paper is to solve for quasi-conformal maps from point
cloud, the formulation of the problem does not rely on any particular discretization method.
It can also be implemented by FEM on meshes, which provides a method to compare with.
In this section we describe briefly how to find quasiconformal maps by FEM. The reason
that we put the FEM part ahead of the PIM part is that the FEM discretization of equation
(2.16) is simpler and easier to understand. It helps to understand the PIM discretization,
which is slightly different.
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3.1 FEM discretization of differential operators

Suppose the finie element basis functions defined on M are {φi}Ni=1. In this paper we use
linear elements, i.e. hat functions, as basis. Let U be the column vector representing the
discritized u, that is

u =

N
∑

j=1

Ujφj .

Then the discretization of the Laplace equation (2.10) is

LU = 0,

where the matrix operator L is given by

Lij =

∫

M

∇φi ·A−1 · ∇φj dV.

The discretization of ∇ is given by D = G, where

Gij =

∫

M

φi∇φj dV.

Similarly, A−1 · ∇ and J · ∇ are discretized as

DA
ij =

∫

M

φiA
−1 · ∇φj dV, DJ

ij =

∫

M

φiJ · ∇φj dV.

These discretizations of differential operators are got by standard procedures of FEM. Other
differential operators can be discretized in similar way.

3.2 Solving linear problems with FEM

In the discrete setting, instead of attacking (2.16) directly, we first discretize the PDE
system (2.10) (2.11) and (2.12). Then we repeat the same procedure of deriving (2.16) in
Section 2 to derive its discretization. Without specifying, discretizations of functions and
operators are represented by column vectors and matrices.

Suppose the system (2.10) (2.11) and (2.12) can be discretized as

LU = 0, (3.1)

LV = 0, (3.2)

A−1DU + JDV = 0, (3.3)

where L,D,A,J are matrices and U, V are column vectors representing the values of dis-
cretized u, v. There are two type of boundary conditions. The one is fixed. We pick out
three points on ∂M and map them to the vertices of a triangular domain on R

2. We indi-
cate these points on ∂M by suffix ‘F ’, thus the values of u, v on these points are denoted
by column vectors UF , VF . The other is partially constrained. The other boundary points
are mapped to the segments of the triangular domain on R

2. We indicate these points on
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∂M by suffix ‘S’, thus the values of u, v on these points are denoted by two column vectors
US , VS . The values of u, v on interior points are denoted by UI , VI . Since the segments in
R
2 are expressed by linear equations in u, v, the second type of boundary condition can be

written as

VS = BUS + C, (3.4)

where B is a matrix and C is a column vector. Of course, we assume that none of edges of the
triangular domain is paralell with the v-axis. By denoting DA = A−1D and DJ = JD, and
seperate the matrices and column vectors into blocks with different indices, the discretized
system can be rewritten as

LIUI + LSUS + LFUF = 0, (3.5)

LIVI + LSVS + LFVF = 0, (3.6)

DA
I UI +DA

SUS +DA
FUF +DJ

I VI +DJ
SVS +DJ

FVF = 0. (3.7)

By the boundary condition (3.4) and the first two equations, we can eliminate VS , UI , VI in
the third one. This gives us an linear system of equations for US ,

(

DA
I L−1

I LS −DA
S + (DJ

I L−1
I LS −DJ

S)B
)

US

=(−DA
I L−1

I LF +DA
F )UF + (−DJ

I L−1
I LF +DJ

F )VF

+ (−DJ
I L−1

I LS +DJ
S)C. (3.8)

Since the interior points are much more than boundary points, the equations are much more
than the unknowns. We can solve US by method of least square. Then we can compute VS

by (3.4) and solve (3.5) and (3.6) for UI and VI .

4 PIM Discretization

The above description of the method and the equation (2.16) is conceptual and abstract. In
order to compute quasi-conformal maps on point cloud, we need to implement the method
by proper numerical solvers of PDEs. In this paper we use the point integral method (PIM)
to discretize the equation (2.16). PIM is a method for discretizing differential operators.
Here we only introduce two aspects that are most relevant to the current problem. The first
one is the solution of the Dirichlet problem of Poisson-type elliptic equation. The second
one is the computation of partial derivatives. In this part, we assume that the domain M
is embedded in R

d. If M is a planar domain, d = 2. If M is on a surface, d = 3. Without
specifying, the indices of summation symbel

∑

goes from 1 to d.

4.1 PIM discretization of Poisson-type equations

PIM uses integrals to approximate derivatives. Consider the Dirichlet problem of the
Poisson-type equation like (2.10)

{

∇ · (A−1 · ∇u) = 0, y ∈ M
u = ub, y ∈ ∂M (4.1)
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According to PIM, it can be approximated by an integral equation

Ltu(x) +
2

β

∫

∂M
u(y)Rt(x,y) dAy =

2

β

∫

∂M
ub(y)Rt(x,y) dAy, (4.2)

where β > 0 is a small constant, such as 10−4. The integral operator Lt is defined by

Ltu(x) :=
1

2t

∫

M

(u(x)− u(y)) (2 +M(x,y))Rt(x,y) dVy

where the two functions Rt(x,y) and M(x,y) are defined for any two points x and y on
M. If M is a planar domain,

Rt(x,y) =Ct exp



− 1

4t

∑

i,j

aij(x)(y
i − xi)(yj − xj)



 ,

M(x,y) =
∑

j,k,l

Dla
lj(x)ajk(x)(y

k − xk),

where the parameter t is a positive number and Ct = (4πt)−d/2. A = (aij) is the matrix
form of the tensor A, and (aij) its inverse. Since A is known (given by the metric C),
these two functions can be computed explicitly. If M is on a surface, let it be equipped
with an orthonormal moving frame {e1, e2}. Since the terms Rt(x,y) and M(x,y) contain
x−y, which is computed in R

3, we need to extend A = (aij) to R
3. We first extend {e1, e2}

to {e1, e2, e3}, where e3 is a smooth unit normal vector field of M in R
3. The extended

coefficient matrix in the extended frame {e1, e2, e3} is

Â =

(

A
1

)

Transform to the Cartesian coordinates,

Ā = (e1, e2, e3)Â(e1, e2, e3)
T . (4.3)

By replacing A by Ā = (āij) in Rt(x,y) and M(x,y) defined above, we get the two functions
that are needed in the case M is on a surface.

To discretize (4.2), let {xi} be the points in the point cloud representing M. Let {Vi}
be a set of area elements associated to the point cloud, and {Ai} a set of length elements
of boundary points {si}. Then we define two matrices Lt and Iβ by

Lt,ij =

{ − 1
2tRt(xi,xj)(2 +M(xi,xj))Vj , if i 6= j

−∑
i 6=j

Lt,ij , if i = j. (4.4)

Iβ
ij =

2

β
Rt(xi, sj)Aj . (4.5)

Define L̄ = Lt + Iβ . Then the Dirichlet problem (4.1) is discretized as

L̄Ū = IβUB,

where the column vector Ū = (u(xi)), and UB = (ub(si)) contains its the boundary compo-
nents. The inner components of Ū can be solved from this equation.
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4.2 PIM discretization of partial derivatives

Let f be any smooth function on M. We want to compute the partial derivative of f along
coordinate xk of Rd. Let R̂t(x,y) be the normalization of Rt(x,y) defined by

R̂t(x,y) = Rt(x,y)

/∫

M

Rt(x,y) dVy.

It can be considered as an approximation of the Dirac δ(|y− x|). The PIM approximation
of ∂kf is given by the integral

∂kf(x) =
1

2t

∫

M

(f(x)− f(y))
∑

l

akl(x)(x
l − yl)R̂t(x,y) dVy.

Note that when M is a surface, in this expression of the partial derivative operator ∂k, we
need to extend the matrix A = (aij) to Ā = (āij) by (4.3), just as what we do for Rt(x,y)
and M(x,y).

The partial derivative operator ∂k is discretized as a matrix. Suppose M is represented
by a point cloud as described above. F is a column vector whose i-th entry is f(xi). The
partial derivative of f along coordinate xk is discretized as ∂kF , where the partial derivative
operater ∂k is a matrix whose entries are defined by

∂k,ij =











− 1
2t

∑

l

akl(xi)(x
l
i − xlj)R̂t(xi,xj)Vj , if i 6= j

−∑
i 6=j

∂k,ij , if i = j.
(4.6)

4.3 Solving linear problems with PIM

In this part, we derive the PIM discretization of the euqation (2.16). Two types of operators
need to discretized. The one is the T in (2.13), which send boundary value of a Dirichlet
problem to its solution. The other is the gradient operator ∇ of a function, which is used
in the Beltrami equation.

Consider T first. According to previous introduction to PIM, the PIM discretization of
the Dirichlet problem of equation (2.10) takes the form

L̄Ū = IβUB, (4.7)

in which the column vector Ū is the discrete solution of the equation. It consists of UI , ŪS

and ŪF . The boundary value UB is a column vector consisting of US and UF . The meanings
of the suffix I, B, S, F are the same as in previous part. I stands for inner components,
B stands for boundary components, F and S are fixed and unfixed boundary components
respectively. We add a bar ‘¯ ’ to some variables because the ŪS and ŪF solved from the
linear system (4.7) are generally different from the given US and UF . There are small errors.
It doesn’t matter because we only need UI . The matrices L̄ and Iβ are defined by (4.4)
and (4.5).

With (4.7) we can express Ū as

Ū = L̄−1IβUB = L̄−1Iβ
SUS + L̄−1Iβ

FUF . (4.8)
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But ŪS and ŪF will not be used. What we need is only UI . Therefore we take

UI = (L̄−1Iβ
S )IUS + (L̄−1Iβ

F )IUF . (4.9)

If we denote UB = (US , UF )
T , then (4.9) can be put into a block matrix form

UI =
(

(L̄−1Iβ
S )I , (L̄−1Iβ

F )I

)

UB.

This is the PIM discretization of the operator T in (2.13) for solving Dirichlet problem of
elliptic equation. Similarly, we have

VI = (L̄−1Iβ
S )IVS + (L̄−1Iβ

F )IVF . (4.10)

Now consider the gradient operator ∇. It is defined by the discretized partial derivative
operators {∂k}dk=1 in Euclidean space Rd, which are given by (4.6). If M is a planar domain,
∇ is just the Euclidean gradient. It is discretized as D = (∂1, ∂2). If M is on a surface, ∇
is the covariant gradient operator. We need to project the Euclidean gradient (∂1, ∂2, ∂3)
to the tangent space of M at each point to get D. Again, let {e1, e2} be an orthonormal
moving frame on M. The two components of D are given by matrices

Di =
d
∑

k=1

eka∂k, a = 1, 2.

The gradient operator is just D = (D1,D2) now. With this discretization of the gradient
operator D, we can express the operator DA = (DA

1 ,DA
2 ) with

DA
a = aabDb, a = 1, 2,

and DJ = (−D2,D1). Therefore the gradient operator ∇ and the related operators has
been discretized by PIM.

With the above preparation, we can derive the PIM equation for the boundary value
problem of Beltrami equation, i.e. the PIM implementation of (3.8). Instead of using (4.7)
directly, we use (4.9) in PIM to implement (3.5). Then we plug (4.9) (4.10) and (3.4) into
(3.7) to get

(

DA
I (L̄−1Iβ

S )I +DA
S +

(

DJ
I (L̄−1Iβ

S )I +DJ
S

)

B
)

US

=− (DA
I (L̄−1Iβ

F )I +DA
F )UF − (DJ

I (L̄−1Iβ
F )I +DJ

F )VF

− (DJ
I (L̄−1Iβ

S )I +DJ
S)C. (4.11)

This is the PIM equation for the boundary value problem of Beltrami equation. We solve
this equation by method of least square and get US . Finally, use (4.9) (4.10) and (3.4) again
to get UI and VI .
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5 Nonlinear Boundary

In previous sections we have seen how to find quasiconformal map from surface to a triangle
by solving Beltrami equation with piecewise linear boundary condition. In order to find
quasiconformal maps to more general target domains, it is necessary to impose nonlinear
boundary conditions. Generally, nonlinear problems need to be solved iteratively. There are
many possible ways to construct an iteration that can be used to find quasiconformal maps.
In this section we describe two of them. The one is based on the variational formulation
of the problem. The other is based on the discretized Beltrami equation as described in
previous sections.

In this paper, the initialization of the iteration is always chosen as the solution of a
linear problem. Given the source domain M and the target domain Φ(M), we arbitrarily
choose three points {pi}3i=1 from ∂M and assign their images as three points {(ui, vi)}3i=1

on ∂Φ(M), which are also arbitrarily chosen. Using method described in previous sections,
the domain M is mapped to the triangle determined by {(ui, vi)}3i=1 in the target domain.
This quasiconformal map is used as the initial solution of the iteration. As iteration goes on,
{(ui, vi)}3i=1 will remain unchanged, while the images of the other points will be updated.

5.1 Variational formulation

There is another approach to characterize the quasiconformal map from one domain do
another, which do not use the language of PDE. The Beltrami equation can be easily
reformulated as an optimization problem for a functional defined on the domain M. The
objective functional is a symmetric bilinear form

F0(u, v) =
1

2

∥

∥A−1 · ∇u+ J · ∇v
∥

∥

2

L2(M;A)

=
1

2

∫

M

(

∇u ·A−1 −∇v · J
)

·A ·
(

A−1 · ∇u+ J · ∇v
)

dV

=
1

2

∫

M

(

∇u ·A−1 · ∇u+∇v ·A−1 · ∇v
)

dV

−
∫

M

∇u · J · ∇v dV.

Notice that the critical points of F0 may not be unique. They correspond to harmonic maps
in metric A. Among such critical points, only the global minimizer of F0 with the boundary
constraint (2.9) is the desired quasiconformal map. And the global minimum is 0.

The boundary constraint (2.9) can be reformulated as a penalty functional

F1(u, v) = ‖f(ub, vb)‖L1(∂M) =

∫

∂M
|f(u, v)| dA. (5.1)

The extended objective functional is

F (u, v) = F0(u, v) + λF1(u, v), (5.2)

where λ is properly chosen in the computation.
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If we can discretize F0 and the constraint (5.1), it is possible to find the quasiconformal
map by directly solving the optimization problem instead of solving nonlinear boundary
value problem of Beltrami equation. In the following, we describe the FEM discretization
of the functionals and its gradient descent algorithm.

Firstly, let’s derive the variational derivatives of F0. As in Section 3, suppose the
finie element basis functions defined on M are {φi}Ni=1. Let (U, V ) be the column vector
representing the discritized (u, v), that is

u =
N
∑

j=1

Ujφj , v =
N
∑

j=1

Vjφj .

Denote the unit tangent vector of ∂M as τ and the arc parameter τ . It is not difficult to
derive that

∂

∂ξ

∣

∣

∣

∣

ξ=0

F0(u+ ξφi, v) =

∫

M

∇u ·A−1 · ∇φi −∇v · J · ∇φi dV

=

∫

M

∇φi ·A−1 · ∇u dV −
∫

∂M
φi

∂v

∂τ
dA

= LU −ZV,

where

Lij =

∫

M

∇φi ·A−1 · ∇φj dV, Zij =

∫

∂M
φi

∂φj

∂τ
dA.

Similarly,

∂

∂ξ

∣

∣

∣

∣

ξ=0

F0(u, v + ξφi) = LV + ZU.

For F1, we can optimize it pointwisely on the boundary. It’s straight forward to get

∂

∂u
|f(u, v)| = sign(f(u, v))

∂f(u, v)

∂u
,

∂

∂v
|f(u, v)| = sign(f(u, v))

∂f(u, v)

∂v
.

Therefore the gradient descent update rule for the extended objective functional F is

U (k+1) = U (k) − ǫ (LU (k) −ZV (k)), (5.3)

V (k+1) = V (k) − ǫ (LV (k) + ZU (k)), (5.4)

U
(k+1)
S = U

(k+1)
S − ǫλ sign(f(U

(k)
S , V

(k)
S ))

∂f

∂u
(U

(k)
S , V

(k)
S ), (5.5)

V
(k+1)
S = V

(k+1)
S − ǫλ sign(f(U

(k)
S , V

(k)
S ))

∂f

∂v
(U

(k)
S , V

(k)
S ). (5.6)

Notice that according to our initialization method, on the boundary only free points (US , VS)
will be updated.
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5.2 Discrete iteration

The Beltrami equation itself is a linear equation whose solution is also the solution of
a pair of Laplace equations. If we can find the right boundary value of (u, v), then we
can get the solution of Beltrami equation in one step by solving the Dirichlet problems
of the Laplace equations with the right boundary value. The nonlinearity exists only in
the boundary condition. This fact suggests that we can use gradient descent algorithm to
update the boundary condition of (u, v) and solve a pair of boundary value problems of
Laplace equation in each iteration step.

We can not impose the correct boundary condition in one step because we only know
where the image boundary curve is, but we don’t know where the image points should be
on that curve. The gradient descent algorithm can make the image points approach to
the boundary curve, but it can not make them move along the curve. PIM is particularly
suitable in this situation because it can move image points along the curve automatically.
As described by (4.8) in Section 4, when solving a Dirichlet problem, although the boundary
value UB is given, the PIM still get new values Ū on all points, including boundary points.
In contrast, FEM only update inner points.

The discrete iteration is as follows:

U
(k+1)
S = U

(k)
S − ǫλ sign(f(Ū

(k)
S , V̄

(k)
S ))

∂f

∂u
(Ū

(k)
S , V̄

(k)
S ), (5.7)

V
(k+1)
S = V

(k)
S − ǫλ sign(f(Ū

(k)
S , V̄

(k)
S ))

∂f

∂v
(Ū

(k)
S , V̄

(k)
S ), (5.8)

Ū (k+1) = L̄−1Iβ
SU

(k+1)
S + L̄−1Iβ

FUF , (5.9)

V̄ (k+1) = L̄−1Iβ
SV

(k+1)
S + L̄−1Iβ

FVF . (5.10)

Notice that (UF , VF ) remains unchanged since they are the fixed boundary values.

6 Numerical Examples

In this section, several examples are presented to show the performance of the PIM al-
gorithm described in previous sections. We first show the convergence of our method for
linear problems (the target domains are triangles). The results are compared with the
computation by an open package online—SC Toolbox. 2 The two examples indicate that
the method converges as the points of discretizations of the domains increase. Then we
show some examples of quasiconformal map with nonlinear boundary. Finally we use the
quasiconformal map to generate textures on several more complicated surfaces.

To illustrate the domains and maps in the examples, lattice textures are employed. We
use relative L2 error

err(u, v) =
‖(u, v)− (u, v)gt‖L2(M)

‖(u, v)gt‖L2(M)

to compare the results of computations.

2See http://www.math.udel.edu/∼driscoll/SC/
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6.1 Convergence for linear problems

6.1.1 Conformal map on unit disk

Conformal maps on plane are commonly seen in textbooks. The gradients of the two
components (u, v) of such a map are orthogonal to each other. Consider a map Φ from the
unit disk M to a triangle Φ(M) whose vertices are (1, 0), (0, 1) and (−1, 0). These vertices
are precisely on the unit circle ∂M. We assume that Φ fixes these points and maps the
other boundary points of the disk to the edges of Φ(M). The disk is discretized with 2610,
10191, and 40269 points.

We take the results of SC Toolbox as the ground truth and compute the errors. The
textured domain and image of the computed Φ are shown in Figure 1. The relative L2

errors are listed in Table 1. The result of the PIM algorithm converges as the number

(a) (b)

Figure 1: Conformal map from the unit disk to a triangle (40269 points): (a) the unit disk;
(b) image of Φ.

|V | 2610 10191 40296

PIM 0.028669 0.018098 0.011850

Table 1: Relative L2 errors: conformal map from the unit disk to a triangle

of points increases. Even for the discretization with 2610 points, the error is very small.
We can see from Figure 1 that Φ maps right angles to right angles. This means that the
conjugacy of the map is well-preserved by the computation method.

6.1.2 Quasi-conformal map from a cap

Our second example is a quasi-conformal map. As argued in Section 2, any quasi-conformal
map with a Beltrami coefficient is a conformal map respective to some metric, and vise
versa. Thus giving a Beltrami coefficient is equivalent to giving a metric, up to dilation. In
this example we will looking for a conformal map with respect to a given metric.

Let M be a spherical cap, a part of the unit 2-sphere in R
3. The height of the cap is

1/2, thus the cap angle is π/3. Since no coordinates is taken on M, we use the coordinates

20



(x, y, z) of the ambient space R
3 to represent points on M. We choose an orthonormal

frame on the cap as

e1 =
(−z, 0, x)
√

1− y2
, e2 =

(xy, y2 − 1, yz)
√

1− y2
.

See Figure 2(a) for an illustration of the frame and see (b) for the textured domain.
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(a) (b)

Figure 2: Orthonormal moving frame and texture on the cap (18540 points): (a) Orthornor-
mal frame on the cap; (b) A texture on the cap

We define a metric on M by pullback. Let φ = s◦P , in which P is the normal projection
of the cap onto a disk in the x− y plane and s is a scaling that maps the image of P to the
unit disk. Pullback by φ the standard Euclidean metric of the unit disk to the cap, we get

C =
4

3(1− y2)

(

z2 −xyz
−xyz x2y2 + (1− y2)2

)

.

This is the matrix CAB of the pullback metric C in the orthonormal frame. The matrix
that is used directly in solving for quasi-conformal map is

A−1 =
4

3(1− y2)

(

x2y2 + (1− y2)2 xyz
xyz z2

)

.

The boundary condition is as follows. Let Φ map respectively

(√
3

2
, 0, 0

)

7→ (1, 0),

(

0,

√
3

2
, 0

)

7→ (0, 1),

(

−
√
3

2
, 0, 0

)

7→ (−1, 0).

We can not use the SC Toolbox to produce a quasi-conformal map directly from a surface
to the planar region. It can produce a conformal map f from the unit disk D to the triangle
Φ(M) which fixed the vertices of the triangle. Therefore f−1 ◦ Φ is a map from M to
D. This is a quasi-conformal map to D that has the same Beltrami coefficient as Φ, since
composing a conformal map does not change Beltrami coefficient. On the other hand, by
our definition of the scaled projection φ = s ◦ P and the pullback metric C, it is clear that
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φ is also a quasi-conformal map with the same Beltrami coefficient. By the uniqueness of
quasi-conformal map with given Beltrami coefficient and boundary conditions, there must
be φ = f−1 ◦ Φ, or Φ = f ◦ φ. Equivalently, the following diagram commutes.

M
φ

��

Φ

##
G

G

G

G

G

G

G

G

D
f

// Φ(M)

Since φ is given by exact formula and f can be computed by SC Toolbox, we can assume
f ◦ φ as the ‘ground truth’.

We compute Φ by the PIM algorithm here and compare it with f ◦φ. Figure 3(a) is the
image of the projection φ. Figure 3(b) is the images of Φ which are computed by the PIM
algorithm. The map from 3(a) to 3(b) is just the conformal map f . From the textures we
can see that the conjugacy of f is well-preserved by our algorithm. The relative L2 errors

(a) (b)

Figure 3: Quasi-conformal map from the cap to a triangle (18540 points): (a) image of the
projection φ; (b) image of Φ.

are listed in Table 2. It suggests that both implementations of the method converge.

|V | 1199 4689 18540

PIM 0.079714 0.056181 0.040528

Table 2: Relative L2 errors: conformal map from cap to a triangle

6.2 Nonlinear examples

We first show an trivial example: identity map on the unit disk. This problem is nontriv-
ial for our algorithms because it initially maps the unit disk to a triangle, which is then
deformed to the unit disk iteratively. From this example we can see the accuracy of the
algorithms. Figure 4 shows the results of two methods. The one is the discrete iteration of
PIM on the point cloud, the other is the FEM discretization of variational formulation on
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the mesh. From this figure we can see that both results are reasonable, but the distortion
near boundary is larger. The relative L2 error of PIM is 0.077869, while that of FEM is
0.010702.
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(a) (b)

Figure 4: Identity map from the unit disk to itself (10191 points): (a) image by PIM; (b)
image by FEM.

Another example is the conformal map from a human face (Alex) to the unit disk on the
plain. The reason that we choose conformal map instead of more general quasiconformal
map is that the quality of conformal maps are easily seen. For maps whose the exact solu-
tions are unknown, it is not possible to compute L2 errors of the numerical computations.
But from the textures we can check whether right angles are mapped to right angles. If
they are, it is reasonable to conclude that the maps are conformal.

See Figure 5 for the results of PIM. The texture on the domain surface is the pull-back
of the chessboard texture on the target domain. We can see that the image is indeed an
unit disk. The image points are not uniformly distributed. Also, the chessboard lines on
the domain surface are nearly orthogonal. But near the boundary the angles are distorted
more. Here we only want to show that PIM can be used to find quasiconformal map with
nonlinear boundary. But the performance needs further improvements.

6.3 More textures

Texture generation is one of applications of quasiconformal maps. Figure 6 show some
examples of textures generated by conformal maps from surfaces to planar triangles.

7 Conclusion

In this paper we develop and implemente a method of looking for quasi-conformal maps on
point clouds. The problem is reduced to solving Beltrami equation and the related elliptic
equation with proper boundary condition. Then we apply the point integral method (PIM)
to solve the equations numerically. Experiments on some examples on Euclidean plane and
surfaces indicate the convergence of the PIM algorithm. Therefore we believe this method
to be a reliable tool for solving quasi-conformal maps on point clouds.
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Figure 5: Conformal map from Alex to the unit disk (10597 points): (a) domain with
pull-back texture; (b) image.

Here we have only considered quasi-conformal maps defined on simply-connected do-
mains on Euclidean plane and on surfaces. The image of the maps are also confined to
triangular regions on plane. In future work, we hope to generalize the method to more
general situations.
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Figure 6: Conformal map from surfaces: (a) Alex’s face; (b) Planck’s head; (c) David’s
head; (d) A tooth; (e) A bone; (f) A dodecahedron;
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