
NONLOCAL APPROXIMATION OF ELLIPTIC OPERATORS WITH
ANISOTROPIC COEFFICIENTS ON MANIFOLD ∗

ZUOQIANG SHI†

Abstract. In this paper, we give an integral approximation for the elliptic operators with
anisotropic coefficients on smooth manifold. Using the integral approximation, the elliptic equation
is tranformed to an integral equation. The integral approximation preserves the symmetry and
coercivity of the original elliptic operator. Based on these good properties, we prove the convergence
between the solutions of the integral equation and the original elliptic equation.

1. Introduction. Recently, manifold model attracts more and more attentions
in many applications, include data analysis and image processing [28, 27, 3, 7, 18,
15, 29, 13, 17, 6, 25, 33]. In the manifold model, data or images are assumed to be
distributed in a low dimensional manifold embedded in a high dimensional Euclidean
space. Differential operators on the manifold, particularly the elliptic operators, en-
code lots of intrinsic information of the manifold.

Besides the data analysis and image processing, PDEs on manifolds also arise
in many different applications, including material science [5, 10], fluid flow [12, 14],
biology and biophysics [2, 11, 26, 1]. Many methods have been developed to solve
PDEs on curved surfaces embedded in R3, such as surface finite element method [9],
level set method [4, 34], grid based particle method [20, 19] and closest point method
[30, 24]. On the other hand, these methods do not apply in high dimensional problem
directly.

In the past few years, many numerical methods to solve PDEs on manifold em-
bedded in high dimensional space were developed. Liang et al. proposed to discretize
the differential operators on point cloud by local least square approximations of the
manifold [23]. Later, Lai et al. proposed local mesh method to approximate the
differential operators on point cloud [16]. The main idea is to construct mesh locally
around each point by using K nearest neighbors instead of constructing the global
mesh. The other approach is so called point integral method [22, 21, 31, 32]. In the
point integral method, the differential operators are approximated by integral oper-
ators. Then it is easy to discretize the integral operators in manifold since there is
not any differential operators inside. The convergence of the point integral method
for elliptic operators with isotropic coefficients has been proved [21].

In this paper, we consider to solve general elliptic operators with anisotropic
coefficients on manifold M. We assume that M ∈ C2 is a compact m-dimensional
manifold isometrically embedded in Rd with the standard Euclidean metric and m ≤
d. If M has boundary, the boundary, ∂M is also a C2 smooth manifold.

Let X : V ⊂ Rm → M ⊂ Rd be a local parametrization of M and θ ∈ V . For
any differentiable function f :M→ R, let F (θ) = f(X(θ)), define

Dkf(X(θ)) =

m∑
i,j=1

gij(θ)
∂Xk

∂θi
(θ)

∂F

∂θj
(θ), k = 1, · · · , d.(1.1)

where (gij)i,j=1,··· ,m = G−1 and G(θ) = (gij)i,j=1,··· ,m is the first fundamental form
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which is defined by

gij(θ) =

d∑
k=1

∂Xk

∂θi
(θ)

∂Xk

∂θj
(θ), i, j = 1, · · · ,m.(1.2)

The general second order elliptic PDE on manifold M has following form,

−
d∑

i,j=1

Di(aij(x)Dju(x)) = f(x), x ∈M(1.3)

The coeffcients aij(x) and source term f(x) are smooth functions of spatial variables,
i.e.

aij , f ∈ C1(M), i, j = 1, · · · , d

The matrix (aij)i,j=1,··· ,d is symmetric and maps the tangent space Tx into iteself
and sastifies following elliptic condtion: there exist generic constants 0 < a0, a1 <∞
independent on x such that for any ξ = [ξ1, · · · , ξd]t ∈ Tx,

a0

d∑
i=1

ξ2i ≤
d∑

i,j=1

aij(x)ξiξj ≤ a1
d∑
i=1

ξ2i(1.4)

For any x ∈M, the matrix (aij(x)) gives a linear transform from Rd to Rd, denoted
as A(x). The tangent space at x, Tx, is a invariant subspace of A(x). Confined on
Tx, A(x) introduces a linear transform from Tx to Tx, denoted as AT (x).

In [22, 21], the point integral method (PIM) was proposed for elliptic equation
with isotropic coefficients, i.e.,

(1.5) aij(x) = p2(x)δij ,

where p(x) ≥ C0 > 0 and

δij =

{
1, i = j,
0, i 6= j.

The main ingredient of the point integral method is to approximate the elliptic equa-
tion by an integral equation:
(1.6)
1

t

∫
M
Rt(x,y)(u(x)−u(y))p(y)dµy−2

∫
∂M

∂u

∂n
(y)R̄t(x,y)p(y)dτy =

∫
M
f(y)

R̄t(x,y)

p(y)
dµy,

where n is the out normal of ∂M, Rt(x,y) and R̄t(x,y) are kernel functions given as
following

(1.7) Rt(x,y) = CtR

(
|x− y|2

4t

)
, R̄t(x,y) = CtR̄

(
|x− y|2

4t

)
where Ct = 1

(4πt)k/2 is the normalizing factor with k = dim(M). R ∈ C2(R+) be

a positive function which is integrable over [0,+∞) and R̄(r) =
∫ +∞
r

R(s)ds. The
main advantage of the integral equation is that there is no differential operators in the
equation. It is easy to be discretized from point clouds using numerical integration.
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The main contribution of this paper is to generalize the point integral method
to solve the general elliptic equation (1.3). The observation is to change the kernel
function to

K̄t(x,y) =
1√
|AT (x)|

R̄x
t (x,y) +

1√
|AT (y)|

R̄y
t (x,y)(1.8)

Kt(x,y) =
1√
|AT (x)|

Rx
t (x,y) +

1√
|AT (y)|

Ry
t (x,y)(1.9)

where |AT (x)| is the determinant of AT (x) and

Rx
t (x,y) = R

(
(xm − ym)amn(x)(xn − yn)

4t

)
,Ry
t (x,y) = R

(
(xm − ym)amn(y)(xn − yn)

4t

)
R̄x
t (x,y) = R̄

(
(xm − ym)amn(x)(xn − yn)

4t

)
,R̄y
t (x,y) = R̄

(
(xm − ym)amn(y)(xn − yn)

4t

)
with matrix (aij(x))i,j=1,··· ,d is the inverse of the coefficient matrix (aij(x))i,j=1,··· ,d

Using above kernel function, we get an integral equation approximate the original
elliptic equation (1.3),

1

t

∫
M
Kt(x,y)(u(x)− u(y))dµy −

∫
∂M

d∑
i,j=1

ni(y)aij(y)Dju(y)K̄t(x,y)dτy(1.10)

=

∫
M
K̄t(x,y)f(y)dµy,

Furthermore, under some mild assumption in Assumption 1.1, we prove that the
solution of the integral equation (1.10) converges to the solution of the elliptic equation
(1.3) as t goes to 0.

Assumption 1.1.
• Smoothness of the manifold: M, ∂M are both compact and C∞ smooth
k-dimensional submanifolds isometrically embedded in a Euclidean space Rd.

• Assumptions on the kernel function R(r):
(a) Smoothness: R ∈ C2(R+);
(b) Nonnegativity: R(r) ≥ 0 for any r ≥ 0.
(c) Compact support: R(r) = 0 for ∀r > 1;
(d) Nondegeneracy: ∃δ0 > 0 so that R(r) ≥ δ0 for 0 ≤ r ≤ 1

2 .
Remark 1.1. The assumption on the kernel function is very mild. The compact

support assumption can be relaxed to exponentially decay, like Gaussian kernel. In
the nondegeneracy assumption, 1/2 may be replaced by a positive number θ0 with
0 < θ0 < 1. Similar assumptions on the kernel function is also used in analysis the
nonlocal diffusion problem [8].

Under above assumptions, we prove the convergence which is stated in Theorem
1.1.

Theorem 1.1. Let u be the solution to Problem (1.3) with f ∈ C1(M) and the
vector ut be the solution to the problem (1.10). Then there exists constants C and T0
only depend on M, such that for any t ≤ T0

‖u− ut‖H1(M) ≤ Ct1/2‖f‖C1(M).
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Remark 1.2. Using the techniques in [31, 21], we can get the similar result for
f ∈ H1(M), i.e.

‖u− ut‖H1(M) ≤ Ct1/2‖f‖H1(M).

To make the paper clear and concise, we only present the analysis for f ∈ C1(M).
The generalization for f ∈ H1(M) is straightforward following the similar arguments
in [31, 21].

The rest of this paper is organized as follows. In Section 2, we prove Theorem
1.1 based on the local truncation error estimate and the stability analysis. The local
truncation error analysis is given in Section 3. The stability analysis is defered to
Appendix, since it is similar to the result in our previous paper [31]. Finally, the
conclusions and discussion of future work are provided in Section 4.

2. Proof of the Main Theorem (Theorem 1.1). To prove Theorem 1.1, we
follow the standard argument in numerical analysis. First, we derive the truncation
error of the integral approximation (1.10) in Theorem 2.1. Then, we use the stability
estimate given in Theorem 2.2 and 2.3 to get the error estimate of the solution. In
the truncation error, we have two terms, interior term and the boundary term. Cor-
responding to these two terms, we give two stability estimate respectively in Theorem
2.2 and 2.3.

Theorem 2.1. Under the assumptions in Assumption 1.1, let u(x) be the solution
of the problem (1.3) and ut(x) be the solution of the corresponding integral equation
(1.10). If u ∈ C3(M), then there exists constants C, T0 depending only on M, ∂M,
so that for any t ≤ T0,

‖Lt(u− ut)− Ibd‖L2(M) ≤ Ct
1/2‖u‖C3(M),(2.1)

‖D (Lt(u− ut)− Ibd)‖L2(M) ≤ C‖u‖C3(M),(2.2)

where

(2.3) Ltu(x) =
1

t

∫
M
Kt(x,y)(u(x)− u(y))dµy.

and

Ibd =

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)∂mnu(y)(xn − yn)dτy(2.4)

−2

∫
∂M

ni(y)(yk − xk)∂kaij(x)∂ju(y)
1√
|AT (x)|

R̄x
t (x,y)dτy

+

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)∂mnu(y)(xn − yn)dτy

+

∫
∂M

nk(y)aij(y)∂ju(y)
∂ia

mn(y)(xn − yn)√
|AT (x)|

akm(x)R̄x
t (x,y)dτy.

The proof of this theorem will be given in Section 3
Next, we list two theorems about the stability.
Theorem 2.2. Assume both the submanifolds M and ∂M are C∞, and u(x)

solves the following equation

−Ltu = r(x)− r̄
4



where r ∈ H1(M) and r̄ = 1
|M|

∫
M r(x)dµx. Then, there exist constants C > 0, T0 >

0 independent on t, such that

‖u‖H1(M) ≤ C
(
‖r‖L2(M) + t‖∇r‖L2(M)

)
as long as t ≤ T0.

For the boundary term Ibd in (2.4), the stablity result is given as follows.

Theorem 2.3. Assume both the submanifolds M and ∂M are C∞ smooth. Let

r(x) =

d∑
i=1

∫
∂M

bi(y)(xi − yi)R̄x
t (x,y)dτy

where bi(y) ∈ L∞(∂M) for any 1 ≤ i ≤ d. Assume u(x) solves the following equation

−Ltu = r − r̄,

where r̄ = 1
|M|

∫
M r(x)dµx. Then, there exist constants C > 0, T0 > 0 independent

on t, such that

‖u‖H1(M) ≤ C
√
t max

1≤i≤d

(
‖bi‖∞

)
.

as long as t ≤ T0. The similar stability results have been given in our previous paper
[31]. Above two theorems can be proved following the similar line as those in [31].
The details of the proof can be found in Appendix A and B respectively.

3. Proof of Theorem 2.1. Proof. Using the Gauss formula, we have

∫
M
Di(aij(y)Dju(y))R̄x

t (x,y)dµy(3.1)

= −
∫
M
aij(y)Dju(y)DiR̄

x
t (x,y)dµy +

∫
∂M

ni(y)aij(y)Dju(y)R̄x
t (x,y)dτy.

Substituting above expansion in the first term of (3.1), we get

−
∫
M
aij(y)Dju(y)DiR̄

x
t (x,y)dµy(3.2)

= − 1

2t

∫
M
aij(y)(∂l′Φ

jgl
′k′∂ju(y))∂i′Φ

igi
′j′∂j′Φ

namn(x)(xm − ym)Rx
t (x,y)dµy.

The coefficients aij(y) maps the tangent space Ty into itself which means that there
exists cl′l(y) such that

aij(y)∂l′Φ
j = cl′l(y)∂lΦ

i.

5



Then

−
∫
M
aij(y)Dju(y)DiR̄

x
t (x,y)dµy(3.3)

= − 1

2t

∫
M
cl′l(y)∂lΦ

i∂i′Φ
igl

′k′gi
′j′∂j′Φ

namn(x)(xm − ym)Rx
t (x,y)∂k′u(y)dµy

= − 1

2t

∫
M
cl′j′(y)∂j′Φ

ngl
′k′amn(x)(xm − ym)Rx

t (x,y)∂k′u(y)dµy

= − 1

2t

∫
M
anl(y)∂l′Φ

lgl
′k′amn(x)(xm − ym)Rx

t (x,y)∂k′u(y)dµy

= − 1

2t

∫
M
anl(y)amn(x)(xm − ym)Rx

t (x,y)Dlu(y)dµy

= − 1

2t

∫
M

(xl − yl)Dlu(y)Rx
t (x,y)dµy

− 1

2t

∫
M

(anl(y)− anl(x))amn(x)(xm − ym)Rx
t (x,y)Dlu(y)dµy

Notice that

DnR̄
x
t (x,y) =

1

2t
∂i′Φ

ngi
′j′∂j′Φ

laml(x)(xm − ym)Rx
t (x,y)

=
1

2t
∂i′Φ

ngi
′j′∂j′Φ

laml(y)∂m′Φm(αm′ − βm′)Rx
t (x,y) +O(1)(3.4)

Since aml(y) also maps the tangent space TyM into itself, there exists dl′l(y) such
that

aml(y)∂m′Φm = dm′l′(y)∂l′Φ
l.

It follows that

DnR̄
x
t (x,y) =

1

2t
dm′l′(y)∂l′Φ

l∂j′Φ
lgi

′j′∂i′Φ
n(αm′ − βm′)Rx

t (x,y) +O(1)(3.5)

=
1

2t
dm′i′(y)∂i′Φ

n(αm′ − βm′)Rx
t (x,y) +O(1)

=
1

2t
amn(y)∂m′Φm(αm′ − βm′)Rx

t (x,y) +O(1)

=
1

2t
amn(y)(xm − ym)Rx

t (x,y) +O(1)

=
1

2t
amn(x)(xm − ym)Rx

t (x,y) +O(1).

The last term of (3.3) becomes

1

2t

∫
M

(anl(y)− anl(x))amn(x)(xm − ym)Rx
t (x,y)Dlu(y)dµy(3.6)

=

∫
M

(anl(y)− anl(x))Dy
nR̄

x
t (x,y)Dlu(y)dµy +O(

√
t)

=−
∫
M
Dnanl(y)Dlu(y)R̄x

t (x,y)dµy

+

∫
∂M

nn(y)(anl(y)− anl(x))R̄x
t (x,y)Dlu(y)dτy +O(

√
t).
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Now, we turn to estimate the first term of (3.3). In this step, we need the help
of Taylor’s expansion of u(x) at y,

(3.7) u(x)−u(y) = (xj−yj)Dju(y)+
1

2
DmDnu(y)(xm−ym)(xn−yn)+O(‖x−y‖3)

This expansion gives immediately

− 1

2t

∫
M

(xj − yj)Dju(y)Rx
t (x,y)dµy(3.8)

= − 1

2t

∫
M
Rx
t (x,y)(u(x)− u(y))dµy

+
1

4t

∫
M
Rx
t (x,y)DmDnu(y)(xm − ym)(xn − yn)dµy +O(

√
t).

Next, we focus on the second term of (3.8). It follows from (3.5) that

aim(x)DiR̄
x
t (x,y) =

1

2t
ami(x)am

′i(x)(xm′ − ym′)Rx
t (x,y) +O(1)(3.9)

=
1

2t
ami(x)am

′i(x)(xm′ − ym′)Rx
t (x,y) +O(1)

=
1

2t
(xm − ym)Rx

t (x,y) +O(1).

The second term of (3.8) is calculated as

1

4t

∫
M
Rx
t (x,y)DmDnu(y)(xm − ym)(xn − yn)dµy(3.10)

=
1

2

∫
M
aim(x)DiR̄

x
t (x,y)DmDnu(y)(xn − yn)dµy

=
1

2

∫
M
aim(x)(∂i′Φ

igi
′j′∂j′Φ

n)DmDnu(y)R̄x
t (x,y)dµy

+
1

2

∫
∂M

ni(y)aim(x)R̄x
t (x,y)DmDnu(y)(xn − yn)dµy.

Notice that

aim(x)(∂i′Φ
igi

′j′∂j′Φ
n)Dm

=aim(y)(∂i′Φ
igi

′j′∂j′Φ
n)(∂i′′Φ

mgi
′′j′′∂j′′) +O(

√
t)

=ci′′l∂lΦ
i∂i′Φ

igi
′j′∂j′Φ

ngi
′′j′′∂j′′ +O(

√
t)

=ci′′l∂lΦ
ngi

′′j′′∂j′′ +O(
√
t)

=amn∂i′′Φ
mgi

′′j′′∂j′′ +O(
√
t)

=amnDm +O(
√
t)

From 3.10, we obtain

1

4t

∫
M
Rx
t (x,y)DmDnu(y)(xm − ym)(xn − yn)dµy(3.11)

=
1

2

∫
M
amn(x)DmDnu(y)R̄x

t (x,y)dµy

+
1

2

∫
∂M

ni(y)aim(x)R̄x
t (x,y)DmDnu(y)(xn − yn)dµy +O(

√
t).
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Now, using (3.1), (3.3), (3.8) and (3.11), we get∫
M
Di(aij(y)Dju(y))R̄x

t (x,y)dµy(3.12)

= − 1

2t

∫
M
Rx
t (x,y)(u(x)− u(y))dµy +

1

2

∫
M
aij(x)DmDnu(y)R̄x

t (x,y)dµy

+

∫
M
Diaij(x)Dju(y)R̄x

t (x,y)dµy +

∫
∂M

ni(y)aij(y)Dju(y)R̄x
t (x,y)dµy

+B.T.1 +O(
√
t)

where

B.T.1 =
1

2

∫
∂M

ni(y)aim(x)R̄x
t (x,y)DmDnu(y)(xn − yn)dτy

−
∫
∂M

ni(y)(aij(y)− aij(x))R̄x
t (x,y)Dju(y)dτy(3.13)

Now, we change the kernel function to 1√
|AT (y)|

R̄y
t (x,y) and get∫

M
Di(aij(y)Dju(y))

1√
|AT (y)|

R̄y
t (x,y)dµy(3.14)

= −
∫
M
aij(y)Dju(y)Di

(
1√
|AT (y)|

R̄y
t (x,y)

)
dµy

+

∫
∂M

ni(y)aij(y)Dju(y)
R̄y
t (x,y)√
|AT (y)|

dτy.

Direct calculation gives that the first term of (3.14) becomes

−
∫
M
aij(y)Dju(y)Di

(
1√
|AT (y)|

R̄y
t (x,y)

)
dµy(3.15)

= − 1

2t

∫
M

1√
|AT (y)|

aij(y)Dju(y)∂i′Φ
igi

′j′∂j′Φ
namn(y)(xm − ym)Ry

t (x,y)dµy

+
1

4t

∫
M

1√
|AT (y)|

aij(y)∂ju(y)Dia
mn(y)(xm − ym)(xn − yn)Ry

t (x,y)dµy

−
∫
M
aij(y)∂ju(y)∂i

(
1√
|AT (y)|

)
R̄y
t (x,y)dµy.

Next, we will estimate the three terms in (3.15) one by one.

− 1

2t

∫
M

1√
|AT (y)|

aij(y)Dju(y)∂i′Φ
igi

′j′∂j′Φ
namn(y)(xm − ym)Ry

t (x,y)dµy(3.16)

= − 1

2t

∫
M

(xj − yj)Dju(y)
1√
|AT (y)|

Ry
t (x,y)dµy

= − 1

2t

∫
M

1√
|AT (y)|

Ry
t (x,y)(u(x)− u(y))dµy

+
1

4t

∫
M

1√
|AT (y)|

Ry
t (x,y)DmDnu(y)(xm − ym)(xn − yn)dµy +O(

√
t).
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The first equality is from (3.5) In the second equality, we use the Taylor’s expansion
(3.7). We keep the first term of (3.16) and the second term can be further calculated
as

1

4t

∫
M

1√
|AT (y)|

Ry
t (x,y)DmDnu(y)(xm − ym)(xn − yn)dµy(3.17)

=
1

4t

∫
M

1√
|AT (x)|

Rx
t (x,y)DmDnu(y)(xm − ym)(xn − yn)dµy +O(

√
t)

=
1

2

∫
M
aij(x)DiDju(y)

1√
|AT (x)|

R̄x
t (x,y)dµy

+
1

2

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)DmDnu(y)(xn − yn)dµy +O(

√
t)

=
1

2

∫
M
aij(x)DiDju(y)

1√
|AT (y)|

R̄y
t (x,y)dµy

+
1

2

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)DmDnu(y)(xn − yn)dµy +O(

√
t).

To get the second equality, we use the same calculation as that in (3.11).

The second term of (3.15) is calculated as

1

4t

∫
M
aij(y)Dju(y)

Dia
mn(y)(xm − ym)(xn − yn)√

|AT (y)|
Ry
t (x,y)dµy(3.18)

=
1

4t

∫
M
aij(y)Dju(y)

Dia
mn(y)(xm − ym)(xn − yn)√

|AT (x)|
Rx
t (x,y)dµy +O(

√
t)

=
1

2

∫
M
aij(y)Dju(y)

Dia
mn(y)(xn − yn)√
|AT (x)|

akm(x)DkR̄
x
t (x,y)dµy +O(

√
t)

=
1

2

∫
M

1√
|AT (x)|

aij(y)Dju(y)Dia
mn(y)akm(y)(∂i′Φ

kgi
′j′∂j′Φ

n)R̄x
t (x,y)dµy

+
1

2

∫
∂M

nk(y)aij(y)Dju(y)
∂ia

mn(y)(xn − yn)√
|AT (x)|

akm(x)R̄x
t (x,y)dµy +O(

√
t).

In addition, we have that

Dia
mn(y)akm(y)(∂i′Φ

kgi
′j′∂j′Φ

n) =
1√
|AT (x)|

Di

√
|AT (x)|.(3.19)

The derivation of this equation can be found in Appendix C.

Using above equation, we obtain

1

2

∫
M

1√
|AT (x)|

aij(y)Dju(y)Dia
mn(y)akm(y)(∂i′Φ

kgi
′j′∂j′Φ

n)R̄x
t (x,y)dµy(3.20)

= −
∫
M
aij(y)Dju(y)

Di

√
|AT (y)|

|AT (y)|
R̄y
t (x,y)dµy +O(

√
t)

=

∫
M
aij(y)Dju(y)Di

(
1√
|AT (y)|

)
R̄y
t (x,y)dµy +O(

√
t).
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Using (3.14), (3.15), (3.16), (3.17), (3.18) and (3.20),

∫
M
Di(aij(y)Dju(y))

1√
|AT (y)|

R̄y
t (x,y)dµy(3.21)

= − 1

2t

∫
M

1√
|AT (y)|

Ry
t (x,y)(u(x)− u(y))dµy

+
1

2

∫
M
aij(x)DiDju(y)

1√
|AT (y)|

R̄y
t (x,y)dµy

+

∫
∂M

ni(y)aij(y)Dju(y)
R̄y
t (x,y)√
|AT (y)|

dτy +B.T.2 +O(
√
t)

where

B.T.2 =
1

2

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)DmDnu(y)(xn − yn)dτy

+
1

2

∫
∂M

nk(y)aij(y)Dju(y)
Dia

mn(y)(xn − yn)√
|AT (x)|

akm(x)R̄x
t (x,y)dτy(3.22)

Now, (3.12) and (3.21) imply that

∫
M
Di(aij(y)Dju(y))

(
1√
|AT (x)|

R̄x
t (x,y) +

1√
|AT (y)|

R̄y
t (x,y)

)
dµy(3.23)

= − 1

2t

∫
M

(
Rx
t (x,y)√
|AT (x)|

+
Ry
t (x,y)√
|AT (y)|

)
(u(x)− u(y))dµy

+
1

2

∫
M
Di(aij(x)Dju(y))

(
R̄x
t (x,y)√
|AT (x)|

+
R̄y
t (x,y)√
|AT (y)|

)
dµy

+

∫
∂M

ni(y)aij(y)Dju(y)

(
R̄x
t (x,y)√
|AT (x)|

+
R̄y
t (x,y)√
|AT (y)|

)
dτy + Ibd +O(

√
t)

where

Ibd =
1

2

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)DmDnu(y)(xn − yn)dτy(3.24)

−
∫
∂M

ni(y)(aij(y)− aij(x))R̄x
t (x,y)Dju(y)dτy

+
1

2

∫
∂M

ni(y)aim(x)
1√
|AT (x)|

R̄x
t (x,y)DmDnu(y)(xn − yn)dτy

+
1

2

∫
∂M

nk(y)aij(y)Dju(y)
Dia

mn(y)(xn − yn)√
|AT (x)|

akm(x)R̄x
t (x,y)dτy.
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Finally, it follows from (3.23) that∫
M
Di(aij(y)Dju(y))

(
1√
|AT (x)|

R̄x
t (x,y) +

1√
|AT (y)|

R̄y
t (x,y)

)
dµy

= −1

t

∫
M

(
Rx
t (x,y)√
|AT (x)|

+
Ry
t (x,y)√
|AT (y)|

)
(u(x)− u(y))dµy

+2

∫
∂M

ni(y)aij(y)Dju(y)

(
R̄x
t (x,y)√
|AT (x)|

+
R̄y
t (x,y)√
|AT (y)|

)
dτy + 2B.T.+O(

√
t).

4. Conclusion. In this paper, we give an integral approximation for the elliptic
operators with anisotropic coefficients on smooth manifold. The integral approxima-
tion is proved to preserve the symmetry and coercivity of the original elliptic operator.
Using the integral approximation, we get an integral equation which approximates the
original elliptic equation. Moreover, we prove the convergence between the solutions
of the integral equation and the original elliptic equation.

One advantage of the integral equation is that there is not any differential op-
erators inside. Then it is easy to develop the numerical scheme in high dimensional
point cloud.

Appendix A. Proof of Theorem 2.2.
In the proof we need two technical lemmas which have been proved in [31].
Lemma A.1. If t is small enough, then for any function u ∈ L2(M), there exists

a constant C > 0 independent on t and u, such that∫
M

∫
M
R

(
|x− y|2

32t

)
(u(x)− u(y))2dµxdµy ≤ C

∫
M

∫
M
R

(
|x− y|2

4t

)
(u(x)− u(y))2dµxdµy.

Lemma A.2. Assume both M and ∂M are C∞. There exists a constant C > 0
independent on t so that for any function u ∈ L2(M) with

∫
M u(x)dµx = 0 and for

any sufficient small t

1

t

∫
M

∫
M
Rt (x,y) (u(x)− u(y))2dµxdµy ≥ C‖u‖2L2(M)(A.1)

One direct corollary of above two lemmas is that the conclusion in Lemma A.2 still
holds if the kernel is replaced by K(x,y, t).

Theorem A.3. Assume both M and ∂M are C∞. There exists a constant
C > 0 independent on t so that for any function u ∈ L2(M) with

∫
M u = 0 and for

any sufficient small t∫
M

∫
M
K(x,y, t)(u(x)− u(y))2dµxdµy ≥ C‖u‖2L2(M)(A.2)

To control the derivative, we also need following theorem.
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Theorem A.4. For any function u ∈ L2(M), there exists a constant C > 0
independent on t and u, such that∫

M

∫
M
K(x,y, t)(u(x)− u(y))2dµxdµy ≥ C

∫
M
|∇v|2dµx(A.3)

where

v(x) =
Ct

wt(x)

∫
M
K(x,y, t)u(y)dµy,(A.4)

and wt(x) = Ct
∫
MK(x,y, t)dµy.

Proof. We start with the evaluation of the xi component of ∇v, 1 ≤ i ≤ d.

∇iv(x) =
1

w2
t (x)

∫
M

∫
M
K(x,y′, t)∇ixK(x,y, t)u(y)dµ′ydµy

− 1

w2
t (x)

∫
M

∫
M
K(x,y, t)∇ixK(x,y′, t)u(y)dµ′ydµy

=
1

w2
t (x)

∫
M

∫
M
K(x,y′, t)∇ixK(x,y, t)(u(y)− u(y′))dµ′ydµy

=
1

w2
t (x)

∫
M

∫
M
Q(x,y,y′, t)(u(y)− u(y′))dµ′ydµy

where Qi(x,y,y′, t) = K(x,y′, t)∇ixK(x,y, t).
Notice that Qi(x,y,y′, t) = 0 when |x − y|2 ≥ 4t/λ or |x − y′|2 ≥ 4t/λ. This

implies that Qi(x,y,y′, t) = 0 when |y − y′|2 ≥ 16t/λ or |x − y+y′

2 |
2 ≥ 4t/λ. Thus

from the assumption on R, we have

Qi(x,y,y′; t)2 ≤
1

δ20
Qi(x,y,y′; t)2R

(
λ‖y − y′‖2

32t

)
R

(
λ‖x− y+y′

2 ‖
2

8t

)
.

We can upper bound the norm of ∇v as follows:

|∇v(x)|2 =
1

w4
t (x)

d∑
i=1

(∫
M

∫
M
Qi(x,y,y′; t)(u(y)− u(y′))dy′dy

)2

≤ 1

w4
t (x)

d∑
i=1

∫
M

∫
M
Q2
i (x,y,y

′; t)

(
R

(
λ‖y − y′‖2

32t

)
R

(
λ‖x− y+y′

2 ‖
2

8t

))−1
dµ′ydµy

∫
M

∫
M
R

(
λ‖x− y+y′

2 ‖
2

8t

)
R

(
λ‖y − y′‖2

32t

)
(u(y)− u(y′))2dµ′ydµy

=
C

t

∫
M

∫
M
t

d∑
i=1

Q2
i (x,y,y

′; t)dµ′ydµy

∫
M

∫
M
R

(
λ|x− y+y′

2 |
2

8t

)
R

(
λ|y − y′|2

32t

)
(u(y)− u(y′))2dµ′ydµy.

By direct calculation, it is easy to check that∫
M

∫
M
t

d∑
i=1

Q2
i (x,y,y

′; t)dµ′ydµy ≤ CC2
t
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where C > 0 is a generic constant.

Finally, we have∫
M
|∇v(x)|2dµx

≤ CC2
t

t

∫
M

(∫
M

∫
M
R

(
λ‖x− y+y′

2 ‖
2

8t

)
R

(
λ‖y − y′‖2

32t

)
(u(y)− u(y′))2dµ′ydµy

)
dµx

=
CC2

t

t

∫
M

∫
M

(∫
M
R

(
λ‖x− y+y′

2 ‖
2

8t

)
dµx

)
R

(
λ‖y − y′‖2

32t

)
(u(y)− u(y′))2dµ′ydµy

≤ CCt
t

∫
M

∫
M
R

(
λ‖y − y′‖2

32t

)
(u(y)− u(y′))2dµ′ydµy.

Using Lemma A.1,∫
M
|∇v(x)|2dµx

≤ CCt
t

∫
M

∫
M
R

(
Λ‖y − y′‖2

2t

)
(u(y)− u(y′))2dµ′ydµy

≤ C
∫
M

∫
M
K(x,y, t)(u(x)− u(y))2dµxdµy.

With Theorem A.4 and A.3, the proof of Theorem 2.2 is straightforward.

Proof. of Theorem 2.2

Using Theorem A.3, we have

‖u‖2L2(M) ≤C 〈u, Ltu〉 = C

∫
M
u(x)(r(x)− r̄)dµx(A.5)

≤C‖u‖L2(M)‖r‖L2(M).

To show the last inequality, we use the fact that

|r̄| = 1

|M|

∣∣∣∣∫
M
r(x)dµx

∣∣∣∣ ≤ C‖r‖L2(M).

(A.5) implies that

‖u‖L2(M) ≤ C‖r‖L2(M).

Now we turn to estimate ‖∇u‖L2(M). Notice that we have the following expression
for u, since u satisfies the integral equation (1.10).

u(x) = v(x) +
t

wt(x)
(r(x)− r̄),

where

v(x) =
1

wt(x)

∫
M
Rt(x,y)u(y)dµy, wt(x) =

∫
M
Rt(x,y)dµy.
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By Theorem A.4, we have

‖∇u‖2L2(M) ≤2‖∇v‖2L2(M) + 2t2
∥∥∥∥∇(r(x)− r̄

wt(x)

)∥∥∥∥2
L2(M)

≤C 〈u, Ltu〉+ Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤C‖u‖L2(M)‖r‖L2(M) + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤C‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤C
(
‖r‖L2(M) + t‖∇r‖L2(M)

)2
.

This completes the proof.

Appendix B. Proof of Theorem 2.3 .
Proof.

The key point is to show that∣∣∣∣∫
M
u(x) (r(x)− r̄) dµx

∣∣∣∣ ≤ C√t max
1≤i≤d

(
‖bi‖∞

)
‖u‖H1(M).(B.1)

Notice that

|r̄| = 1

|M|

∣∣∣∣∣
d∑
i=1

∫
M

∫
∂M

bi(y)(xi − yi)R̄x
t (x,y)dτydx

∣∣∣∣∣ ≤ C√t max
1≤i≤d

(
‖bi‖∞

)
.

Then it is sufficient to show that

∣∣∣∣∣
∫
M
u(x)

(∫
∂M

d∑
i=1

bi(y)(xi − yi)R̄x
t (x,y)dτy

)
dµx

∣∣∣∣∣ ≤ C√t max
1≤i≤d

(
‖bi‖∞

)
‖u‖H1(M).

(B.2)

Notice that

(xi − yi)R̄x
t (x,y) = 2t

d∑
j=1

aij(x)∇jy ¯̄Rx
t (x,y)(B.3)

= −2t
d∑
j=1

aij(x)

(
∇jx ¯̄Rx

t (x,y) +
1

4t

d∑
m,n=1

∇jxamn(x)(xm − ym)(xn − yn)R̄x
t (x,y)

)

where ¯̄Rt(x,y) = Ct
¯̄R

(
1
4t

d∑
m,n=1

(xm − ym)amn(x)(xn − yn)

)
and ¯̄R(r) =

∫∞
r
R̄(s)ds.

By integration by parts, we have

d∑
i,j=1

∫
M
u(x)

∫
∂M

bi(y)aij(x)∇jx ¯̄Rx
t (x,y)dτydx(B.4)

=

d∑
i,j=1

∫
∂M

∫
∂M

nj(x)aij(x)bi(y)u(x) ¯̄Rx
t (x,y)dτxdτy

−
d∑

i,j=1

∫
∂M

∫
M
bi(y)∇jx[u(x)aij(x)] ¯̄Rx

t (x,y)dxdτy.
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For the boundary term,∣∣∣∣∣∣
d∑

i,j=1

∫
∂M

∫
∂M

nj(x)aij(x)bi(y)u(x) ¯̄Rx
t (x,y)dτxdτy

∣∣∣∣∣∣(B.5)

≤ C max
1≤i≤d

(
‖bi‖∞

) ∫
∂M

∫
∂M
|u(x)| ¯̄Rx

t (x,y)dτxdτy

≤ C max
1≤i≤d

(
‖bi‖∞

)(∫
∂M

(∫
∂M
|u(x)| ¯̄Rx

t (x,y)dτx

)2

dτy

)1/2

≤ C max
1≤i≤d

(
‖bi‖∞

)(∫
∂M

(∫
∂M

¯̄Rx
t (x,y)dτx

)(∫
∂M
|u(x)|2 ¯̄Rx

t (x,y)dτx

)
dτy

)1/2

≤ Ct−1/2 max
1≤i≤d

(
‖bi‖∞

)
‖u‖L2(∂M) ≤ Ct−1/2 max

1≤i≤d

(
‖bi‖∞

)
‖u‖H1(M).

The bound of the second term of (B.4) is straightforward. By using the assumption
that the coefficients aij(x) are smooth functions, we have

|
d∑

i,j=1

bi(y)∇jx[u(x)aij(x)]| ≤
d∑

i,j=1

|∇jxu(x)||bi(y)aij(x)|+
d∑

i,j=1

|u(x)||bi(y)∇jxaij(x)|

≤ C max
1≤i≤d

(
‖bi‖∞

)
(|∇u(x)|+ |u(x)|)

where the constant C depends on the curvature of the manifold M.
Then, we have∣∣∣∣∣∣

d∑
i,j=1

∫
∂M

∫
M
bi(y)∇jx[u(x)aij(x)] ¯̄Rx

t (x,y)dxdτy

∣∣∣∣∣∣(B.6)

≤ C max
1≤i≤d

(
‖bi‖∞

) ∫
∂M

∫
M

(|∇u(x)|+ |u(x)|) ¯̄Rt(x,y)dµxdτy

≤ C max
1≤i≤d

(
‖bi‖∞

)(∫
M

(|∇u(x)|2 + |u(x)|2)

(∫
∂M

¯̄Rt(x,y)dτy

)
dµx

)1/2

≤ Ct−1/4 max
1≤i≤d

(
‖bi‖∞

)
‖u‖H1(M).

and

∣∣∣∣∣∣
∫
M
u(x)

∫
∂M

d∑
i,j,m,n=1

bi(y)aij(x)∇jxamn(x)(xm − ym)(xn − yn)R̄x
t (x,y)dτy

dx

∣∣∣∣∣∣
(B.7)

≤Ct
∫
M
|u(x)|

(∫
∂M

R̄x
t (x,y)dτy

)
dx ≤ Ct3/4‖u‖L2 .

Then, the inequality (B.2) is obtained from (B.3), (B.4), (B.5), (B.6) and (B.7).
Now, using Theorem A.3, we have

‖u‖2L2(M) ≤ C 〈u, Ltu〉 ≤ C
√
t max

i

(
‖bi‖∞

)
‖u‖H1(M).(B.8)
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Note r(x) =
∑d
i=1

∫
∂M bi(y)(xi − yi)R̄x

t (x,y)dτy. A direct calculation gives us that

‖r(x)‖L2(M) ≤ Ct1/4 max
1≤i≤d

(
‖bi‖∞

)
, and(B.9)

‖∇r(x)‖L2(M) ≤ Ct−1/4 max
1≤i≤d

(
‖bi‖∞

)
.(B.10)

The integral equation −Ltu = r − r̄ gives that

u(x) = v(x) +
t

wt(x)
(r(x)− r̄)(B.11)

where

v(x) =
1

wt(x)

∫
M
Rt(x,y)u(y)dµy, wt(x) =

∫
M
Rt(x,y)dµy.(B.12)

By Theorem A.4, we have

‖∇u‖2L2(M)(B.13)

≤ 2‖∇v‖2L2(M) + 2t2
∥∥∥∥∇(r(x)− r̄

wt(x)

)∥∥∥∥2
L2(M)

≤ C 〈u, Ltu〉+ Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C
√
t max

1≤i≤d

(
‖bi‖∞

)
‖u‖H1(M) + Ct‖r‖2L2(M) + Ct2‖∇r‖2L2(M)

≤ C max
1≤i≤d

(
‖bi‖∞

) (√
t‖u‖H1(M) + Ct3/2

)
.

Using (B.8) and (B.13), we have

‖u‖2H1(M) ≤ C max
1≤i≤d

(
‖bi‖∞

) (√
t‖u‖H1(M) + Ct3/2

)
,(B.14)

which proves the theorem.

Appendix C. Derivation of Eq. (3.19).

Denote A(x) = (aij(x)) ∈ Rd×d. Let X = [∂1Φ, ∂2Φ, · · · , ∂mΦ] be an orthonor-
mal basis of the tangent space Tx(M) at x and Y be the orthogonal completion of X
in Rd. Then we have

AX = XC, AY = YD,

since the tangent space Tx(M) is a invariant subspace of A(x). This gives a decom-
position of A

A = P

[
C 0
0 D

]
P−1, P = [X,Y], P−1 =

[
(XTX)−1XT

(YTY)−1YT

]
(C.1)
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Using these notations, we have

Dia
mn(y)akm(y)(∂i′Φ

kgi
′j′∂j′Φ

n)

=trace(Di(A
−1)AX(XTX)−1XT)

=trace(Di(A
−1)XC(XTX)−1XT)

=trace

(
PDi

([
C−1 0
0 D−1

])
P−1XC(XTX)−1XT

)
+ trace

(
Di(P)

([
C−1 0
0 D−1

])
P−1XC(XTX)−1XT

)
+ trace

(
P

([
C−1 0
0 D−1

])
Di(P

−1)XC(XTX)−1XT

)
.

Then, we calculate three terms one by one.

trace

(
PDi

([
C−1 0
0 D−1

])
P−1XC(XTX)−1XT

)
= trace

(
Di(C

−1)C
)
,

trace

(
Di(P)

([
C−1 0
0 D−1

])
P−1XC(XTX)−1XT

)
= trace

(
Di(X)(XTX)−1XT

)
,

trace

(
P

([
C−1 0
0 D−1

])
Di(P

−1)XC(XTX)−1XT

)
= trace

(
XDi((X

TX)−1XT)
)
.

Also notice that

trace
(
Di(X)(XTX)−1XT

)
+ trace

(
XDi((X

TX)−1XT)
)

=Di

(
trace

(
(XTX)−1XTX

))
= 0.

Combining all the calculations together, we get

Dia
mn(y)akm(y)(∂i′Φ

kgi
′j′∂j′Φ

n) = trace
(
Di(C

−1)C
)

=
1√

det(C)
Di(
√

det(C)).
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