NONLOCAL APPROXIMATION OF ELLIPTIC OPERATORS WITH ANISOTROPIC COEFFICIENTS ON MANIFOLD

ZUOQIANG SHI

Abstract. In this paper, we give an integral approximation for the elliptic operators with anisotropic coefficients on smooth manifold. Using the integral approximation, the elliptic equation is transformed to an integral equation. The integral approximation preserves the symmetry and coercivity of the original elliptic operator. Based on these good properties, we prove the convergence between the solutions of the integral equation and the original elliptic equation.

1. Introduction. Recently, manifold model attracts more and more attentions in many applications, include data analysis and image processing [28, 27, 3, 7, 18, 15, 29, 13, 17, 6, 25, 33]. In the manifold model, data or images are assumed to be distributed in a low dimensional manifold embedded in a high dimensional Euclidean space. Differential operators on the manifold, particularly the elliptic operators, encode lots of intrinsic information of the manifold.

Besides the data analysis and image processing, PDEs on manifolds also arise in many different applications, including material science [5, 10], fluid flow [12, 14], biology and biophysics [2, 11, 26, 1]. Many methods have been developed to solve PDEs on curved surfaces embedded in \(\mathbb{R}^3 \), such as surface finite element method [9], level set method [4, 34], grid based particle method [20, 19] and closest point method [30, 24]. On the other hand, these methods do not apply in high dimensional problem directly.

In the past few years, many numerical methods to solve PDEs on manifold embedded in high dimensional space were developed. Liang et al. proposed to discretize the differential operators on point cloud by local least square approximations of the manifold [23]. Later, Lai et al. proposed local mesh method to approximate the differential operators on point cloud [16]. The main idea is to construct mesh locally around each point by using \(K \) nearest neighbors instead of constructing the global mesh. The other approach is so called point integral method [22, 21, 31, 32]. In the point integral method, the differential operators are approximated by integral operators. Then it is easy to discretize the integral operators in manifold since there is not any differential operators inside. The convergence of the point integral method for elliptic operators with isotropic coefficients has been proved [21].

In this paper, we consider to solve general elliptic operators with anisotropic coefficients on manifold \(\mathcal{M} \). We assume that \(\mathcal{M} \subset \mathbb{R}^2 \) is a compact \(m \)-dimensional manifold isometrically embedded in \(\mathbb{R}^d \) with the standard Euclidean metric and \(m \leq d \). If \(\mathcal{M} \) has boundary, the boundary, \(\partial \mathcal{M} \) is also a \(C^2 \) smooth manifold.

Let \(X : V \subset \mathbb{R}^m \to \mathcal{M} \subset \mathbb{R}^d \) be a local parametrization of \(\mathcal{M} \) and \(\theta \in V \). For any differentiable function \(f : \mathcal{M} \to \mathbb{R} \), let \(F(\theta) = f(X(\theta)) \), define

\[
D_k f(X(\theta)) = \sum_{i,j=1}^{m} g^{ij}(\theta) \frac{\partial X_k(\theta)}{\partial \theta_i} \frac{\partial F}{\partial \theta_j}(\theta), \quad k = 1, \ldots, d.
\]

where \((g^{ij})_{i,j=1,\ldots,m} = G^{-1} \) and \(G(\theta) = (g_{ij})_{i,j=1,\ldots,m} \) is the first fundamental form.

*Research supported by NSFC Grant 11371220 and 11671005.
†Yau Mathematical Sciences Center, Tsinghua University, Beijing, China, 100084. Email: zqshi@tsinghua.edu.cn.
which is defined by

\[(1.2)\quad g_{ij}(\theta) = \sum_{k=1}^{d} \frac{\partial X_k}{\partial \theta_i}(\theta) \frac{\partial X_k}{\partial \theta_j}(\theta), \quad i, j = 1, \ldots, m.\]

The general second order elliptic PDE on manifold \(M\) has following form,

\[(1.3)\quad - \sum_{i,j=1}^{d} D_i(a_{ij}(x)D_ju(x)) = f(x), \quad x \in M.\]

The coefficients \(a_{ij}(x)\) and source term \(f(x)\) are smooth functions of spatial variables, i.e.

\[a_{ij}, f \in C^1(M), \quad i, j = 1, \ldots, d.\]

The matrix \((a_{ij})_{i,j=1,\ldots,d}\) is symmetric and maps the tangent space \(T_x\) into itself and satisfies following elliptic condition: there exist generic constants \(0 < a_0, a_1 < \infty\) independent on \(x\) such that for any \(\xi = [\xi_1, \ldots, \xi_d]^t \in T_x,\)

\[(1.4)\quad a_0 \sum_{i=1}^{d} \xi_i^2 \leq \sum_{i,j=1}^{d} a_{ij}(x)\xi_i\xi_j \leq a_1 \sum_{i=1}^{d} \xi_i^2.\]

For any \(x \in M,\) the matrix \((a_{ij}(x))\) gives a linear transform from \(\mathbb{R}^d\) to \(\mathbb{R}^d,\) denoted as \(A(x).\) The tangent space at \(x, T_x,\) is a invariant subspace of \(A(x).\) Confining on \(T_x, A(x)\) introduces a linear transform from \(T_x\) to \(T_x,\) denoted as \(A_T(x).\)

In [22, 21], the point integral method (PIM) was proposed for elliptic equation with isotropic coefficients, i.e.,

\[(1.5)\quad a_{ij}(x) = p^2(x)\delta_{ij},\]

where \(p(x) \geq C_0 > 0\) and

\[\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}\]

The main ingredient of the point integral method is to approximate the elliptic equation by an integral equation:

\[(1.6)\quad \frac{1}{t} \int_M R_t(x, y)(u(x)−u(y))p(y)d\mu_y−2 \int_M \frac{\partial u}{\partial n}(y)\tilde{R}_t(x, y)p(y)d\tau_y = \int_M f(y)\frac{\tilde{R}_t(x, y)}{p(y)}d\mu_y,\]

where \(n\) is the out normal of \(\partial M, R_t(x, y)\) and \(\tilde{R}_t(x, y)\) are kernel functions given as following

\[(1.7)\quad R_t(x, y) = C_t R\left(\frac{|x−y|^2}{4t}\right), \quad \tilde{R}_t(x, y) = C_t \tilde{R}\left(\frac{|x−y|^2}{4t}\right)\]

where \(C_2 = \frac{1}{(4\pi t)^{k/2}}\) is the normalizing factor with \(k = \text{dim}(M).\) \(R \in C^2(\mathbb{R}^+\) be a positive function which is integrable over \([0, +\infty)\) and \(\tilde{R}(r) = \int_{r}^{+\infty} R(s)ds.\) The main advantage of the integral equation is that there is no differential operators in the equation. It is easy to be discretized from point clouds using numerical integration.
The main contribution of this paper is to generalize the point integral method to solve the general elliptic equation (1.3). The observation is to change the kernel function to

\[K_t(x, y) = \frac{1}{\sqrt{|A_T(x)|}} R_t^x(x, y) + \frac{1}{\sqrt{|A_T(y)|}} R_t^y(x, y) \]

where \(|A_T(x)|\) is the determinant of \(A_T(x)\) and

\[R_t^x(x, y) = R\left(\frac{(x_m - y_m)a^{mn}(x)(x_n - y_n)}{4t}\right), R_t^y(x, y) = R\left(\frac{(x_m - y_m)a^{mn}(y)(x_n - y_n)}{4t}\right) \]

\[\bar{R}_t^x(x, y) = \bar{R}\left(\frac{(x_m - y_m)a^{mn}(x)(x_n - y_n)}{4t}\right), \bar{R}_t^y(x, y) = \bar{R}\left(\frac{(x_m - y_m)a^{mn}(y)(x_n - y_n)}{4t}\right) \]

with matrix \((a^{ij}(x))_{i,j=1,\ldots,d}\) is the inverse of the coefficient matrix \((a_{ij}(x))_{i,j=1,\ldots,d}\).

Using above kernel function, we get an integral equation approximate the original elliptic equation (1.3),

\[\frac{1}{t} \int_M K_t(x, y)(u(x) - u(y))dy - \int_{\partial M} \sum_{i,j=1}^d n_i(y)a_{ij}(y)D_ju(y)\bar{K}_t(x, y)d\gamma_y \]

\[= \int_M \bar{K}_t(x, y)f(y)dy, \]

Furthermore, under some mild assumption in Assumption 1.1, we prove that the solution of the integral equation (1.10) converges to the solution of the elliptic equation (1.3) as \(t\) goes to 0.

Assumption 1.1.

- Smoothness of the manifold: \(M, \partial M\) are both compact and \(C^\infty\) smooth \(k\)-dimensional submanifolds isometrically embedded in a Euclidean space \(\mathbb{R}^d\).
- Assumptions on the kernel function \(R(r)\):
 - (a) Smoothness: \(R \in C^2(\mathbb{R}^+)\);
 - (b) Nonnegativity: \(R(r) \geq 0\) for any \(r \geq 0\).
 - (c) Compact support: \(R(r) = 0\) for \(\forall r > 1\);
 - (d) Nondegeneracy: \(\exists \delta_0 > 0\) so that \(R(r) \geq \delta_0\) for \(0 \leq r \leq \frac{1}{2}\).

Remark 1.1. The assumption on the kernel function is very mild. The compact support assumption can be relaxed to exponentially decay, like Gaussian kernel. In the nondegeneracy assumption, \(1/2\) may be replaced by a positive number \(\theta_0\) with \(0 < \theta_0 < 1\). Similar assumptions on the kernel function is also used in analysis the nonlocal diffusion problem [8].

Under above assumptions, we prove the convergence which is stated in Theorem 1.1.

Theorem 1.1. Let \(u\) be the solution to Problem (1.3) with \(f \in C^1(M)\) and the vector \(u_t\) be the solution to the problem (1.10). Then there exists constants \(C\) and \(T_0\) only depend on \(M\), such that for any \(t \leq T_0\)

\[\|u - u_t\|_{H^1(M)} \leq Ct^{1/2}\|f\|_{C^1(M)}. \]
To make the paper clear and concise, we only present the analysis for $f \in H^{1}(\mathcal{M})$, i.e.

$$
\|u - u_{t}\|_{H^{1}(\mathcal{M})} \leq C t^{1/2} \|f\|_{H^{1}(\mathcal{M})}.
$$

To make the paper clear and concise, we only present the analysis for $f \in C^{1}(\mathcal{M})$. The generalization for $f \in H^{1}(\mathcal{M})$ is straightforward following the similar arguments in [31, 21].

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1 based on the local truncation error estimate and the stability analysis. The local truncation error analysis is given in Section 3. The stability analysis is deferred to Appendix, since it is similar to the result in our previous paper [31]. Finally, the conclusions and discussion of future work are provided in Section 4.

2. Proof of the Main Theorem (Theorem 1.1). To prove Theorem 1.1, we follow the standard argument in numerical analysis. First, we derive the truncation error of the integral approximation (1.10) in Theorem 2.1. Then, we use the stability estimate given in Theorem 2.2 and 2.3 to get the error estimate of the solution. In the truncation error, we have two terms, interior term and the boundary term. Corresponding to these two terms, we give two stability estimate respectively in Theorem 2.2 and 2.3.

Theorem 2.1. Under the assumptions in Assumption 1.1, let $u(\mathbf{x})$ be the solution of the problem (1.3) and $u_{t}(\mathbf{x})$ be the solution of the corresponding integral equation (1.10). If $u \in C^{3}(\mathcal{M})$, then there exists constants C, T_{0} depending only on $\mathcal{M}, \partial \mathcal{M}$, so that for any $t \leq T_{0}$,

\begin{align}
(2.1) & \quad \|L_{t}(u - u_{t}) - I_{bd}\|_{L^{2}(\mathcal{M})} \leq C t^{1/2} \|u\|_{C^{3}(\mathcal{M})}, \\
(2.2) & \quad \|D (L_{t}(u - u_{t}) - I_{bd})\|_{L^{2}(\mathcal{M})} \leq C \|u\|_{C^{3}(\mathcal{M})},
\end{align}

where

$$
(2.3) \quad L_{t}u(\mathbf{x}) = \frac{1}{t} \int_{\mathcal{M}} K_{t}(\mathbf{x}, \mathbf{y})(u(\mathbf{x}) - u(\mathbf{y})) d\mu_{\mathbf{y}}.
$$

and

$$
(2.4) \quad I_{bd} = \int_{\partial \mathcal{M}} n_{i}(\mathbf{y}) a_{im}(\mathbf{x}) \frac{1}{\sqrt{|A_{T}(\mathbf{x})|}} \bar{R}^{i}_{t}(\mathbf{x}, \mathbf{y}) \partial_{mn} u(\mathbf{y}) (x_{n} - y_{n}) d\tau_{\mathbf{y}}
$$

$$
- 2 \int_{\partial \mathcal{M}} n_{i}(\mathbf{y})(y_{k} - x_{k}) \partial_{k} a_{ij}(\mathbf{x}) \partial_{j} u(\mathbf{y}) \frac{1}{\sqrt{|A_{T}(\mathbf{x})|}} \bar{R}^{i}_{t}(\mathbf{x}, \mathbf{y}) d\tau_{\mathbf{y}}
$$

$$
+ \int_{\partial \mathcal{M}} n_{i}(\mathbf{y}) a_{im}(\mathbf{x}) \frac{1}{\sqrt{|A_{T}(\mathbf{x})|}} \bar{R}^{i}_{t}(\mathbf{x}, \mathbf{y}) \partial_{mn} u(\mathbf{y}) (x_{n} - y_{n}) d\tau_{\mathbf{y}}
$$

$$
+ \int_{\partial \mathcal{M}} n_{k}(\mathbf{y}) a_{ij}(\mathbf{y}) \partial_{j} u(\mathbf{y}) \frac{\partial_{i} a_{mn}(\mathbf{y})(x_{n} - y_{n})}{\sqrt{|A_{T}(\mathbf{x})|}} a_{km}(\mathbf{x}) \bar{R}^{i}_{t}(\mathbf{x}, \mathbf{y}) d\tau_{\mathbf{y}}.
$$

The proof of this theorem will be given in Section 3.

Next, we list two theorems about the stability.

Theorem 2.2. Assume both the submanifolds \mathcal{M} and $\partial \mathcal{M}$ are C^{∞}, and $u(\mathbf{x})$ solves the following equation

$$
-L_{t}u = r(\mathbf{x}) - \bar{r}
$$
where \(r \in H^1(M) \) and \(\bar{r} = \frac{1}{|M|} \int_M r(\mathbf{x}) d\mu_\mathbf{x} \). Then, there exist constants \(C > 0, T_0 > 0 \) independent on \(t \), such that

\[
\|u\|_{H^1(M)} \leq C \left(\|r\|_{L^2(M)} + t \|\nabla r\|_{L^2(M)} \right)
\]

as long as \(t \leq T_0 \).

For the boundary term \(I_{bd} \) in (2.4), the stability result is given as follows.

Theorem 2.3. Assume both the submanifolds \(M \) and \(\partial M \) are \(C^\infty \) smooth. Let

\[
r(\mathbf{x}) = \sum_{i=1}^{d} \int_{\partial M} b^i(\mathbf{y})(x_i - y_i) \bar{R}_t^\mathbf{x}(\mathbf{x}, \mathbf{y}) d\tau_\mathbf{y}
\]

where \(b^i(\mathbf{y}) \in L^\infty(\partial M) \) for any \(1 \leq i \leq d \). Assume \(u(\mathbf{x}) \) solves the following equation

\[-Lu = r - \bar{r},\]

where \(\bar{r} = \frac{1}{|M|} \int_M r(\mathbf{x}) d\mu_\mathbf{x} \). Then, there exist constants \(C > 0, T_0 > 0 \) independent on \(t \), such that

\[
\|u\|_{H^1(M)} \leq C \sqrt{t} \max_{1 \leq i \leq d} (\|b^i\|_{\infty})
\]

as long as \(t \leq T_0 \). The similar stability results have been given in our previous paper [31]. Above two theorems can be proved following the similar line as those in [31]. The details of the proof can be found in Appendix A and B respectively.

3. Proof of Theorem 2.1

Proof. Using the Gauss formula, we have

\[
(3.1) \quad \int_M D_i(a_{ij}(\mathbf{y})D_j u(\mathbf{y})) \bar{R}_t^\mathbf{x}(\mathbf{x}, \mathbf{y}) d\mu_\mathbf{y}
= -\int_M a_{ij}(\mathbf{y})D_j u(\mathbf{y})D_i \bar{R}_t^\mathbf{x}(\mathbf{x}, \mathbf{y}) d\mu_\mathbf{y} + \int_{\partial M} n_i(\mathbf{y})a_{ij}(\mathbf{y})D_j u(\mathbf{y}) \bar{R}_t^\mathbf{x}(\mathbf{x}, \mathbf{y}) d\tau_\mathbf{y}.
\]

Substituting above expansion in the first term of (3.1), we get

\[
(3.2) \quad -\int_M a_{ij}(\mathbf{y})D_j u(\mathbf{y})D_i \bar{R}_t^\mathbf{x}(\mathbf{x}, \mathbf{y}) d\mu_\mathbf{y}
= -\frac{1}{2t} \int_M a_{ij}(\mathbf{y})(\partial_i \Phi^j g^{ii'}k_{ij'} \partial_j u(\mathbf{y})) \partial_i \Phi^i g^{ii'} \partial_j \Phi^i \partial_i \Phi^j a^{mn}(\mathbf{x})(x_m - y_m) \bar{R}_t^\mathbf{x}(\mathbf{x}, \mathbf{y}) d\mu_\mathbf{y}.
\]

The coefficients \(a_{ij}(\mathbf{y}) \) maps the tangent space \(T_\mathbf{y} \) into itself which means that there exists \(c_{ij}(\mathbf{y}) \) such that

\[
a_{ij}(\mathbf{y}) \partial_i \Phi^j = c_{ij}(\mathbf{y}) \partial_i \Phi^j.
\]
The last term of (3.3) becomes

\[(3.3) \quad - \int_M a_{ij}(y) D_j u(y) D_i \tilde{R}_t^\xi(x, y) d\mu_y \]

\[= - \frac{1}{2t} \int_M c_{ij}(y) \partial_i \Phi^m g^i j' \partial_j \Phi^l a^{ml}(x)(x_m - y_m) R_{ij}^\xi(x, y) \partial_k u(y) d\mu_y \]

\[= - \frac{1}{2t} \int_M c_{ij}(y) \partial_j \Phi^m g^i j' a^{mn}(x)(x_m - y_m) R_{ij}^\xi(x, y) \partial_k u(y) d\mu_y \]

\[= - \frac{1}{2t} \int_M a_{nl}(y) \partial_i \Phi^m g^i j' a^{mn}(x)(x_m - y_m) R_{ij}^\xi(x, y) \partial_k u(y) d\mu_y \]

\[= - \frac{1}{2t} \int_M (x_l - y_l) D_i u(y) R_{ij}^\xi(x, y) d\mu_y \]

\[= - \frac{1}{2t} \int_M (a_{nl}(y) - a_{nl}(x)) a^{mn}(x)(x_m - y_m) R_{ij}^\xi(x, y) D_i u(y) d\mu_y \]

Notice that

\[D_n \tilde{R}_t^\xi(x, y) = \frac{1}{2t} \partial_i \Phi^m g^i j' \partial_j \Phi^l a^{ml}(x)(x_m - y_m) R_{ij}^\xi(x, y) \]

\[= \frac{1}{2t} \partial_i \Phi^m g^i j' \partial_j \Phi^l a^{ml}(y) \partial_m \Phi^m (\alpha_m' - \beta_m') R_{ij}^\xi(x, y) + O(1) \]

Since \(a^{ml}(y) \) also maps the tangent space \(T_x M \) into itself, there exists \(d_{ij}(y) \) such that

\[a^{ml}(y) \partial_m \Phi^m = d_{m'l'}(y) \partial_{m'} \Phi^{l'} . \]

It follows that

\[(3.5) \quad D_n \tilde{R}_t^\xi(x, y) = \frac{1}{2t} d_{m'l'}(y) \partial_l \Phi^m g^i j' \partial_i \Phi^l a^{ml}(x)(x_m - y_m) R_{ij}^\xi(x, y) + O(1) \]

\[= \frac{1}{2t} d_{m'l'} (y) \partial_l \Phi^m (\alpha_m' - \beta_m') R_{ij}^\xi(x, y) + O(1) \]

\[= \frac{1}{2t} a^{mn}(y) \partial_m \Phi^m (\alpha_m' - \beta_m') R_{ij}^\xi(x, y) + O(1) \]

\[= \frac{1}{2t} a^{mn}(y)(x_m - y_m) R_{ij}^\xi(x, y) + O(1) \]

The last term of (3.3) becomes

\[(3.6) \quad \frac{1}{2t} \int_M (a_{nl}(y) - a_{nl}(x)) a^{mn}(x)(x_m - y_m) R_{ij}^\xi(x, y) D_i u(y) d\mu_y \]

\[= \int_M (a_{nl}(y) - a_{nl}(x)) D_i \tilde{R}_t^\xi(x, y) D_i u(y) d\mu_y + O(\sqrt{t}) \]

\[= - \int_M D_n a_{nl}(y) D_i u(y) \tilde{R}_t^\xi(x, y) d\mu_y \]

\[+ \int_{\partial M} n_{ij}(y)(a_{nl}(y) - a_{nl}(x)) \tilde{R}_t^\xi(x, y) D_i u(y) d\tau_y + O(\sqrt{t}) . \]
Now, we turn to estimate the first term of (3.3). In this step, we need the help of Taylor’s expansion of \(u(x) \) at \(y \),

\[
(3.7) \quad u(x) - u(y) = (x_j - y_j)D_j u(y) + \frac{1}{2} D_m D_n u(y) (x_m - y_m)(x_n - y_n) + O(\|x-y\|^3)
\]

This expansion gives immediately

\[
(3.8) \quad - \frac{1}{2t} \int_M (x_j - y_j)D_j u(y) R_t^\mathfrak{R}(x,y) d\mu_y = - \frac{1}{2t} \int_M R_t^\mathfrak{R}(x,y) d\mu_y + \frac{1}{4t} \int_M R_t^\mathfrak{R}(x,y) D_m D_n u(y) (x_m - y_m)(x_n - y_n) d\mu_y + O(\sqrt{t}).
\]

Next, we focus on the second term of (3.8). It follows from (3.5) that

\[
(3.9) \quad a_{im}(x) D_i R_t^\mathfrak{R}(x,y) = \frac{1}{2t} a_{mi}(x) a_{m'i}(x) (x_{m'} - y_{m'}) R_t^\mathfrak{R}(x,y) + O(1)
\]

The second term of (3.8) is calculated as

\[
(3.10) \quad \frac{1}{4t} \int_M R_t^\mathfrak{R}(x,y) D_m D_n u(y) (x_m - y_m)(x_n - y_n) d\mu_y = \frac{1}{2} \int_M D_i R_t^\mathfrak{R}(x,y) D_m D_n u(y) (x_m - y_m) d\mu_y
\]

Notice that

\[
a_{im}(x) (\partial_i \Phi^i g^{i'j'} \partial_j \Phi^n) D_m = a_{im}(y) (\partial_i \Phi^i g^{i'j'} \partial_j \Phi^n) (\partial_i \Phi^i g^{i'j'} \partial_j \Phi^n) + O(\sqrt{t})
\]

From (3.10), we obtain

\[
(3.11) \quad \frac{1}{4t} \int_M R_t^\mathfrak{R}(x,y) D_m D_n u(y) (x_m - y_m)(x_n - y_n) d\mu_y = \frac{1}{2} \int_M D_i R_t^\mathfrak{R}(x,y) D_m D_n u(y) (x_m - y_m) d\mu_y
\]
Next, we will estimate the three terms in (3.15) one by one.

\[
(3.12) \quad \int_{\mathcal{M}} D_i(a_{ij}(y)D_j u(y)) \tilde{R}_t^\gamma(x, y) d\mu_y
\]
\[
= -\frac{1}{2t} \int_{\mathcal{M}} R_t^\gamma(x, y)(u(x) - u(y)) d\mu_y + \frac{1}{2} \int_{\mathcal{M}} a_{ij}(x) D_m D_n u(y) \tilde{R}_t^\gamma(x, y) d\mu_y
\]
\[
+ \int_{\mathcal{M}} D_i a_{ij}(x) D_j u(y) \tilde{R}_t^\gamma(x, y) d\mu_y + \int_{\partial \mathcal{M}} n_i(y) a_{ij}(y) D_j u(y) \tilde{R}_t^\gamma(x, y) d\mu_y
\]
\[
+ B.T.1 + O(\sqrt{t})
\]

where

\[
B.T.1 = \frac{1}{2} \int_{\partial \mathcal{M}} n_i(y) a_{im}(x) \tilde{R}_t^\gamma(x, y) D_m D_n u(y)(x_n - y_n) d\tau_y
\]

\[
(3.13) \quad - \int_{\partial \mathcal{M}} n_i(y)(a_{ij}(y) - a_{ij}(x)) \tilde{R}_t^\gamma(x, y) D_j u(y) d\tau_y
\]

Now, we change the kernel function to \(\frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y) \) and get

\[
(3.14) \quad \int_{\mathcal{M}} D_i(a_{ij}(y)D_j u(y)) \left(\frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y) \right) d\mu_y
\]
\[
= - \int_{\mathcal{M}} a_{ij}(y) D_j u(y) D_i \left(\frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y) \right) d\mu_y
\]
\[
+ \int_{\partial \mathcal{M}} n_i(y) a_{ij}(y) D_j u(y) \frac{R_t^\gamma(x, y)}{\sqrt{|A_T(y)|}} d\tau_y.
\]

Direct calculation gives that the first term of (3.14) becomes

\[
(3.15) \quad - \int_{\mathcal{M}} a_{ij}(y) D_j u(y) D_i \left(\frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y) \right) d\mu_y
\]
\[
= -\frac{1}{2t} \int_{\mathcal{M}} \frac{1}{\sqrt{|A_T(y)|}} a_{ij}(y) D_j u(y) \partial_i \Phi^i g^{ij} \partial_j \Phi^n a^{mn}(y)(x_m - y_m) R_t^\gamma(x, y) d\mu_y
\]
\[
+ \frac{1}{4t} \int_{\mathcal{M}} \frac{1}{\sqrt{|A_T(y)|}} a_{ij}(y) \partial_j u(y) D_i a^{mn}(y)(x_m - y_m)(x_n - y_n) R_t^\gamma(x, y) d\mu_y
\]
\[
- \int_{\mathcal{M}} a_{ij}(y) \partial_j u(y) \partial_i \left(\frac{1}{\sqrt{|A_T(y)|}} \right) R_t^\gamma(x, y) d\mu_y.
\]

Next, we will estimate the three terms in (3.15) one by one.

\[
(3.16) \quad -\frac{1}{2t} \int_{\mathcal{M}} \frac{1}{\sqrt{|A_T(y)|}} a_{ij}(y) D_j u(y) \partial_i \Phi^i g^{ij} \partial_j \Phi^n a^{mn}(y)(x_m - y_m) R_t^\gamma(x, y) d\mu_y
\]
\[
= -\frac{1}{2t} \int_{\mathcal{M}} (x_j - y_j) D_j u(y) \frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y) d\mu_y
\]
\[
= -\frac{1}{2t} \int_{\mathcal{M}} \frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y)(u(x) - u(y)) d\mu_y
\]
\[
+ \frac{1}{4t} \int_{\mathcal{M}} \frac{1}{\sqrt{|A_T(y)|}} R_t^\gamma(x, y) D_m D_n u(y)(x_m - y_m)(x_n - y_n) d\mu_y + O(\sqrt{t}).
\]
The first equality is from (3.5). In the second equality, we use the Taylor’s expansion (3.7). We keep the first term of (3.16) and the second term can be further calculated as

\[(3.17) \quad \frac{1}{4t} \int_{M} \frac{1}{\sqrt{|A_T(y)|}} R_t^y(x, y) D_m D_n u(y)(x_m - y_m)(x_n - y_n) d\mu_y \]

\[= \frac{1}{4t} \int_{M} \frac{1}{\sqrt{|A_T(x)|}} R_t^x(x, y) D_m D_n u(y)(x_m - y_m)(x_n - y_n) d\mu_y + O(\sqrt{t}) \]

\[= \frac{1}{2} \int_{\partial M} a_{ij}(x) D_i D_j u(y) \frac{1}{\sqrt{|A_T(x)|}} R_t^x(x, y) d\mu_y \]

\[+ \frac{1}{2} \int_{\partial M} n_i(y) a_{im}(x) \frac{1}{\sqrt{|A_T(x)|}} R_t^x(x, y) D_m D_n u(y)(x_n - y_n) d\mu_y + O(\sqrt{t}) \]

To get the second equality, we use the same calculation as that in (3.11).

The second term of (3.15) is calculated as

\[(3.18) \quad \frac{1}{4t} \int_{M} a_{ij}(y) D_j u(y) D_i a^{mn}(y)(x_m - y_m)(x_n - y_n) R_t^y(x, y) d\mu_y \]

\[= \frac{1}{4t} \int_{M} a_{ij}(y) D_j u(y) D_i a^{mn}(y)(x_m - y_m)(x_n - y_n) R_t^x(x, y) d\mu_y + O(\sqrt{t}) \]

\[= \frac{1}{2} \int_{M} a_{ij}(y) D_j u(y) D_i a^{mn}(y)(x_n - y_n) a_{km}(x) D_k R_t^x(x, y) d\mu_y + O(\sqrt{t}) \]

\[= \frac{1}{2} \int_{M} \frac{1}{\sqrt{|A_T(x)|}} a_{ij}(y) D_j u(y) D_i a^{mn}(y)(\partial_i \Phi^k g^{ij} \partial_j \Phi^n) R_t^x(x, y) d\mu_y \]

\[+ \frac{1}{2} \int_{\partial M} n_i(y) a_{ij}(y) D_j u(y) \frac{\partial a^{mn}(y)(x_n - y_n)}{\sqrt{|A_T(x)|}} a_{km}(x) R_t^x(x, y) d\mu_y + O(\sqrt{t}). \]

In addition, we have that

\[(3.19) \quad D_i a^{mn}(y)a_{km}(y)(\partial_i \Phi^k g^{ij} \partial_j \Phi^n) = \frac{1}{\sqrt{|A_T(x)|}} D_i \sqrt{|A_T(x)|}. \]

The derivation of this equation can be found in Appendix C.

Using above equation, we obtain

\[(3.20) \quad \frac{1}{2} \int_{M} \frac{1}{\sqrt{|A_T(x)|}} a_{ij}(y) D_j u(y) D_i a^{mn}(y)a_{km}(y)(\partial_i \Phi^k g^{ij} \partial_j \Phi^n) R_t^x(x, y) d\mu_y \]

\[= - \int_{M} a_{ij}(y) D_j u(y) D_i \sqrt{|A_T(y)|} R_t^x(x, y) d\mu_y + O(\sqrt{t}) \]

\[= \int_{M} a_{ij}(y) D_j u(y) D_i \left(\frac{1}{\sqrt{|A_T(y)|}} \right) R_t^x(x, y) d\mu_y + O(\sqrt{t}). \]
Using (3.14), (3.15), (3.16), (3.17), (3.18) and (3.20),

\[
\int_{\mathcal{M}} D_i(a_{ij}(y)D_j u(y)) \frac{1}{\sqrt{|A_T(y)|}} \tilde{R}_i^y(x, y) \, d\mu_y
\]

\[
= -\frac{1}{2i} \int_{\mathcal{M}} \frac{1}{\sqrt{|A_T(y)|}} R_i^x(x, y)(u(x) - u(y)) \, d\mu_y
\]

\[
+ \frac{1}{2} \int_{\mathcal{M}} a_{ij}(x)D_i D_j u(y) \frac{1}{\sqrt{|A_T(y)|}} R_i^y(x, y) \, d\mu_y
\]

\[
+ \int_{\partial\mathcal{M}} n_i(y)a_{ij}(y)D_j u(y) \frac{R_i^y(x, y)}{\sqrt{|A_T(y)|}} \, d\tau_y + B.T.2 + O(\sqrt{t})
\]

where

\[
B.T.2 = \frac{1}{2} \int_{\partial\mathcal{M}} n_i(y)a_{im}(x) \frac{1}{\sqrt{|A_T(x)|}} \tilde{R}_i^x(x, y) D_m D_n u(y)(x_n - y_n) \, d\tau_y
\]

\[
+ \frac{1}{2} \int_{\partial\mathcal{M}} n_k(y)a_{ij}(y)D_j u(y) \frac{D_i a^{mn}(y)(x_n - y_n)}{\sqrt{|A_T(x)|}} a_{km}(x) \tilde{R}_i^x(x, y) \, d\tau_y
\]

Now, (3.12) and (3.21) imply that

\[
\int_{\mathcal{M}} D_i(a_{ij}(y)D_j u(y)) \left(\frac{1}{\sqrt{|A_T(x)|}} \tilde{R}_i^x(x, y) + \frac{1}{\sqrt{|A_T(y)|}} \tilde{R}_i^y(x, y) \right) \, d\mu_y
\]

\[
= -\frac{1}{2i} \int_{\mathcal{M}} \left(R_i^x(x, y) \frac{1}{\sqrt{|A_T(x)|}} + R_i^y(x, y) \frac{1}{\sqrt{|A_T(y)|}} \right) (u(x) - u(y)) \, d\mu_y
\]

\[
+ \frac{1}{2} \int_{\mathcal{M}} D_i(a_{ij}(x)D_j u(y)) \left(\frac{R_i^x(x, y)}{\sqrt{|A_T(x)|}} + \frac{R_i^y(x, y)}{\sqrt{|A_T(y)|}} \right) \, d\mu_y
\]

\[
+ \int_{\partial\mathcal{M}} n_i(y)a_{ij}(y)D_j u(y) \left(\frac{R_i^x(x, y)}{\sqrt{|A_T(x)|}} + \frac{R_i^y(x, y)}{\sqrt{|A_T(y)|}} \right) \, d\tau_y + I_{bd} + O(\sqrt{t})
\]

where

\[
I_{bd} = \frac{1}{2} \int_{\partial\mathcal{M}} n_i(y)a_{im}(x) \frac{1}{\sqrt{|A_T(x)|}} \tilde{R}_i^x(x, y) D_m D_n u(y)(x_n - y_n) \, d\tau_y
\]

\[
- \int_{\partial\mathcal{M}} n_i(y)(a_{ij}(y) - a_{ij}(x)) \tilde{R}_i^x(x, y) D_j u(y) \, d\tau_y
\]

\[
+ \frac{1}{2} \int_{\partial\mathcal{M}} n_i(y)a_{im}(x) \frac{1}{\sqrt{|A_T(x)|}} \tilde{R}_i^x(x, y) D_m D_n u(y)(x_n - y_n) \, d\tau_y
\]

\[
+ \frac{1}{2} \int_{\partial\mathcal{M}} n_k(y)a_{ij}(y)D_j u(y) \frac{D_i a^{mn}(y)(x_n - y_n)}{\sqrt{|A_T(x)|}} a_{km}(x) \tilde{R}_i^x(x, y) \, d\tau_y.
\]
Finally, it follows from (3.23) that

\[
\int_{\mathcal{M}} D_i(a_{ij}(y)D_ju(y)) \left(\frac{1}{\sqrt{|A_T(x)|}} \bar{R}_t^x(x, y) + \frac{1}{\sqrt{|A_T(y)|}} \bar{R}_t^y(x, y) \right) \, d\mu_y
\]

\[
= -\frac{1}{t} \int_{\mathcal{M}} \left(\frac{R_t^x(x, y)}{\sqrt{|A_T(x)|}} + \frac{R_t^y(x, y)}{\sqrt{|A_T(y)|}} \right) (u(x) - u(y)) \, d\mu_y
\]

\[
+ 2 \int_{\partial \mathcal{M}} n_i(y)a_{ij}(y)D_ju(y) \left(\frac{\bar{R}_t^x(x, y)}{\sqrt{|A_T(x)|}} + \frac{\bar{R}_t^y(x, y)}{\sqrt{|A_T(y)|}} \right) \, d\tau_y + 2B.T. + O(\sqrt{t}).
\]

\[\square\]

4. Conclusion. In this paper, we give an integral approximation for the elliptic operators with anisotropic coefficients on smooth manifold. The integral approximation is proved to preserve the symmetry and coercivity of the original elliptic operator. Using the integral approximation, we get an integral equation which approximates the original elliptic equation. Moreover, we prove the convergence between the solutions of the integral equation and the original elliptic equation.

One advantage of the integral equation is that there is not any differential operators inside. Then it is easy to develop the numerical scheme in high dimensional point cloud.

Appendix A. Proof of Theorem 2.2.

In the proof we need two technical lemmas which have been proved in [31].

Lemma A.1. If \(t \) is small enough, then for any function \(u \in L^2(\mathcal{M}) \), there exists a constant \(C > 0 \) independent on \(t \) and \(u \), such that

\[
\int_{\mathcal{M}} \int_{\mathcal{M}} \left(\frac{|x - y|^2}{32t} \right) (u(x) - u(y))^2 \, d\mu_x \, d\mu_y \leq C \int_{\mathcal{M}} \int_{\mathcal{M}} \left(\frac{|x - y|^2}{4t} \right) (u(x) - u(y))^2 \, d\mu_x \, d\mu_y.
\]

Lemma A.2. Assume both \(\mathcal{M} \) and \(\partial \mathcal{M} \) are \(C^\infty \). There exists a constant \(C > 0 \) independent on \(t \) so that for any function \(u \in L^2(\mathcal{M}) \) with \(\int_{\mathcal{M}} u(x) \, d\mu_x = 0 \) and for any sufficient small \(t \)

\[
(A.1) \quad \frac{1}{t} \int_{\mathcal{M}} \int_{\mathcal{M}} R_t(x, y) (u(x) - u(y))^2 \, d\mu_x \, d\mu_y \geq C \|u\|^2_{L^2(\mathcal{M})}
\]

One direct corollary of above two lemmas is that the conclusion in Lemma A.2 still holds if the kernel is replaced by \(K(x, y, t) \).

Theorem A.3. Assume both \(\mathcal{M} \) and \(\partial \mathcal{M} \) are \(C^\infty \). There exists a constant \(C > 0 \) independent on \(t \) so that for any function \(u \in L^2(\mathcal{M}) \) with \(\int_{\mathcal{M}} u = 0 \) and for any sufficient small \(t \)

\[
(A.2) \quad \int_{\mathcal{M}} \int_{\mathcal{M}} K(x, y, t)(u(x) - u(y))^2 \, d\mu_x \, d\mu_y \geq C \|u\|^2_{L^2(\mathcal{M})}
\]

To control the derivative, we also need following theorem.
Theorem A.4. For any function \(u \in L^2(\mathcal{M}) \), there exists a constant \(C > 0 \) independent on \(t \) and \(u \), such that

\[
\int_M \int_M K(x, y, t)(u(x) - u(y))^2 d\mu_x d\mu_y \geq C \int_M |\nabla v|^2 d\mu_x
\]

where

\[
v(x) = \frac{C}{w_t(x)} \int_M K(x, y, t)u(y) d\mu_y,
\]

and \(w_t(x) = C_t \int_M K(x, y, t) d\mu_y \).

Proof. We start with the evaluation of the \(x_i \) component of \(\nabla v \), \(1 \leq i \leq d \).

\[
\nabla_i v(x) = \frac{1}{w_t(x)} \int_M \int_M K(x, y', t) \nabla_i^x K(x, y, t) u(y) d\mu'_y d\mu_y - \frac{1}{w_t(x)} \int_M \int_M K(x, y, t) \nabla_i^x K(x, y', t) u(y) d\mu'_y d\mu_y
\]

\[
= \frac{1}{w_t(x)} \int_M \int_M K(x, y', t) \nabla_i^x K(x, y, t) (u(y) - u(y')) d\mu'_y d\mu_y
\]

\[
= \frac{1}{w_t(x)} \int_M \int_M Q_i(x, y, y', t) (u(y) - u(y')) d\mu'_y d\mu_y
\]

where \(Q_i(x, y, y', t) = K(x, y', t) \nabla_i^x K(x, y, t) \).

Notice that \(Q_i(x, y, y', t) = 0 \) when \(|x - y|^2 \geq 4t/\lambda \) or \(|x - y'|^2 \geq 4t/\lambda \). This implies that \(Q_i(x, y, y', t) = 0 \) when \(|y - y'|^2 \geq 16t/\lambda \) or \(|x - \frac{y + y'}{2}|^2 \geq 4t/\lambda \). Thus from the assumption on \(R \), we have

\[
Q_i(x, y, y'; t) \leq \frac{1}{\beta_0} Q_i(x, y, y'; t) R \left(\frac{\lambda |y - y'|^2}{32t} \right) R \left(\frac{\lambda |x - \frac{y + y'}{2}|^2}{8t} \right).
\]

We can upper bound the norm of \(\nabla v \) as follows:

\[
|\nabla v(x)|^2 \leq \frac{1}{w_t(x)} \sum_{i=1}^d \left(\int_M \int_M Q_i^2(x, y, y', t) (u(y) - u(y')) dy' dy \right)^2
\]

\[
\leq \frac{1}{w_t(x)} \sum_{i=1}^d \int_M \int_M Q_i^2(x, y, y'; t) \left(R \left(\frac{\lambda |y - y'|^2}{32t} \right) R \left(\frac{\lambda |x - \frac{y + y'}{2}|^2}{8t} \right) \right)^{-1} \left(\int_M \int_M \right) \left(R \left(\frac{\lambda |y - y'|^2}{32t} \right) R \left(\frac{\lambda |x - \frac{y + y'}{2}|^2}{8t} \right) \right) (u(y) - u(y'))^2 d\mu'_y d\mu_y
\]

\[
= \frac{C}{t} \int_M \int_M \sum_{i=1}^d Q_i^2(x, y, y'; t) d\mu'_y d\mu_y
\]

\[
\int_M \int_M \left(\frac{\lambda |x - \frac{y + y'}{2}|^2}{8t} \right) R \left(\frac{\lambda |y - y'|^2}{32t} \right) (u(y) - u(y'))^2 d\mu'_y d\mu_y.
\]

By direct calculation, it is easy to check that

\[
\int_M \int_M t \sum_{i=1}^d Q_i^2(x, y, y'; t) d\mu'_y d\mu_y \leq CC_t^2
\]
where $C > 0$ is a generic constant.

Finally, we have

$$\int_{\mathcal{M}} |\nabla v(x)|^2 d\mu_x$$

\[
\leq \frac{CC^2}{t} \int_{\mathcal{M}} \left(\int_{\mathcal{M}} \int_{\mathcal{M}} R \left(\frac{\lambda \|x - y\|^2}{8t} \right) R \left(\frac{\lambda \|y - y'\|^2}{32t} \right) (u(y) - u(y'))^2 d\mu_y d\mu_x \right) d\mu_x \\
= \frac{CC^2}{t} \int_{\mathcal{M}} \left(\int_{\mathcal{M}} R \left(\frac{\lambda \|x - y\|^2}{8t} \right) d\mu_x \right) R \left(\frac{\lambda \|y - y'\|^2}{32t} \right) (u(y) - u(y'))^2 d\mu_y d\mu_x \\
\leq \frac{C}{t} \int_{\mathcal{M}} \int_{\mathcal{M}} R \left(\frac{\lambda \|y - y'\|^2}{32t} \right) (u(y) - u(y'))^2 d\mu_y d\mu_x.
\]

Using Lemma A.1,

$$\int_{\mathcal{M}} |\nabla v(x)|^2 d\mu_x$$

\[
\leq \frac{CC_t}{t} \int_{\mathcal{M}} \left(\int_{\mathcal{M}} \int_{\mathcal{M}} R \left(\frac{\lambda \|y - y'\|^2}{2t} \right) (u(y) - u(y'))^2 d\mu_y d\mu_x \right) d\mu_x \\
\leq C \int_{\mathcal{M}} \int_{\mathcal{M}} K(x, y, t)(u(x) - u(y))^2 d\mu_x d\mu_y.
\]

With Theorem A.4 and A.3, the proof of Theorem 2.2 is straightforward.

Proof of Theorem 2.2

Using Theorem A.3, we have

(A.5) \[\|u\|^2_{L^2(\mathcal{M})} \leq C \langle u, L_t u \rangle = C \int_{\mathcal{M}} u(x)(r(x) - \bar{r})d\mu_x \leq C\|u\|_{L^2(\mathcal{M})}\|r\|_{L^2(\mathcal{M})}.\]

To show the last inequality, we use the fact that

$$|\bar{r}| = \frac{1}{|\mathcal{M}|} \left| \int_{\mathcal{M}} r(x)d\mu_x \right| \leq C\|r\|_{L^2(\mathcal{M})}.$$

(A.5) implies that

$$\|u\|_{L^2(\mathcal{M})} \leq C\|r\|_{L^2(\mathcal{M})}.$$

Now we turn to estimate $\|\nabla u\|_{L^2(\mathcal{M})}$. Notice that we have the following expression for u, since u satisfies the integral equation (1.10),

$$u(x) = v(x) + \frac{t}{w_t(x)} (r(x) - \bar{r}),$$

where

$$v(x) = \frac{1}{w_t(x)} \int_{\mathcal{M}} R_t(x, y) u(y)d\mu_y, \quad w_t(x) = \int_{\mathcal{M}} R_t(x, y)d\mu_y.$$
By Theorem A.4, we have
\[
\|\nabla u\|^2_{L^2(\mathcal{M})} \leq 2\|\nabla v\|^2_{L^2(\mathcal{M})} + 2t^2 \|\nabla \left(\frac{r(x) - \bar{r}}{w_i(x)} \right)\|^2_{L^2(\mathcal{M})} \\
\leq C(u, L_i u) + Ct\|r\|^2_{L^2(\mathcal{M})} + Ct^2\|\nabla r\|^2_{L^2(\mathcal{M})} \\
\leq C\|u\|^2_{L^2(\mathcal{M})}\|r\|_{L^2(\mathcal{M})} + Ct\|r\|^2_{L^2(\mathcal{M})} + Ct^2\|\nabla r\|^2_{L^2(\mathcal{M})} \\
\leq C\|r\|^2_{L^2(\mathcal{M})} + Ct^2\|\nabla r\|^2_{L^2(\mathcal{M})} \\
\leq C\left(\|r\|_{L^2(\mathcal{M})} + t\|\nabla r\|_{L^2(\mathcal{M})}\right)^2.
\]
This completes the proof. \(\square\)

Appendix B. Proof of Theorem 2.3.

Proof.

The key point is to show that
\[
(B.1) \quad \left| \int_{\mathcal{M}} u(x) (r(x) - \bar{r}) \, d\mu_x \right| \leq C\sqrt{t} \max_{1 \leq i \leq d} (\|b^i\|_\infty) \|u\|_{H^1(\mathcal{M})}.
\]

Notice that
\[
|\bar{r}| = \frac{1}{|\mathcal{M}|} \left| \sum_{j=1}^{d} \int_{\mathcal{M}} \int_{\partial\mathcal{M}} b^j(y)(x_i - y_i)\tilde{R}_t^x(x, y) \, d\tau_y \, dx \right| \leq C\sqrt{t} \max_{1 \leq i \leq d} (\|b^i\|_\infty).
\]

Then it is sufficient to show that
\[
(B.2) \quad \left| \int_{\mathcal{M}} u(x) \left(\int_{\partial\mathcal{M}} \sum_{i=1}^{d} b^i(y)(x_i - y_i)\tilde{R}_t^x(x, y) \, d\tau_y \right) \, d\mu_x \right| \leq C\sqrt{t} \max_{1 \leq i \leq d} (\|b^i\|_\infty) \|u\|_{H^1(\mathcal{M})}.
\]

Notice that
\[
(B.3) \quad (x_i - y_i)\tilde{R}_t^x(x, y) = 2t \sum_{j=1}^{d} a_{ij}(x)\nabla^j_y \tilde{R}_t^x(x, y)
\]
\[
= -2t \sum_{j=1}^{d} a_{ij}(x) \left(\nabla^j_x \tilde{R}_t^x(x, y) + \frac{1}{4t} \sum_{m,n=1}^{d} \nabla^j_x a^{mn}(x)(x_m - y_m)(x_n - y_n)\tilde{R}_t^x(x, y) \right)
\]
where \(\tilde{R}_t(x, y) = C_t\tilde{R} \left(\frac{1}{4t} \sum_{m,n=1}^{d} (x_m - y_m)a^{mn}(x)(x_n - y_n) \right)\) and \(\tilde{R}(r) = \int_{r}^{\infty} \tilde{R}(s) \, ds.\)

By integration by parts, we have
\[
(B.4) \quad \sum_{i,j=1}^{d} \int_{\mathcal{M}} u(x) \int_{\partial\mathcal{M}} b^i(y)a_{ij}(x)\nabla^j_x \tilde{R}_t^x(x, y) \, d\tau_y \, dx
\]
\[
= \sum_{i,j=1}^{d} \int_{\partial\mathcal{M}} \int_{\partial\mathcal{M}} n_j(x)a_{ij}(x)b^i(y)u(x)\tilde{R}_t^x(x, y) \, d\tau_x \, d\tau_y
\]
\[
- \sum_{i,j=1}^{d} \int_{\partial\mathcal{M}} \int_{\mathcal{M}} b^i(y)\nabla^j_x [u(x)a_{ij}(x)]\tilde{R}_t^x(x, y) \, dx \, d\tau_y.
\]
For the boundary term,

\begin{equation}
(B.5) \quad \left| \sum_{i,j=1}^{d} \int_{\partial M} \int_{\partial M} n_j(x) a_{ij}(x) b^i(y) u(x) \tilde{R}_{t}^\infty(x,y) \, d\tau_x \, d\tau_y \right|
\end{equation}

\begin{align*}
&\leq C \max_{1 \leq i \leq d} (\|b^i\|_\infty) \int_{\partial M} \int_{\partial M} |u(x)| \tilde{R}_{t}^\infty(x,y) \, d\tau_x \, d\tau_y \\
&\leq C \max_{1 \leq i \leq d} (\|b^i\|_\infty) \left(\int_{\partial M} \int_{\partial M} |u(x)| \tilde{R}_{t}^\infty(x,y) \, d\tau_x \right)^2 \frac{1}{2} d\tau_y \\
&\leq C \max_{1 \leq i \leq d} (\|b^i\|_\infty) \left(\int_{\partial M} \int_{\partial M} \tilde{R}_{t}^\infty(x,y) \, d\tau_x \right) \left(\int_{\partial M} |u(x)|^2 \tilde{R}_{t}^\infty(x,y) \, d\tau_y \right) \frac{1}{2} \\
&\leq C t^{-1/2} \max_{1 \leq i \leq d} (\|b^i\|_\infty) \|u\|_{L^2(\partial M)} \leq C t^{-1/2} \max_{1 \leq i \leq d} (\|b^i\|_\infty) \|u\|_{H^1(M)}.
\end{align*}

The bound of the second term of (B.4) is straightforward. By using the assumption that the coefficients $a_{ij}(x)$ are smooth functions, we have

\begin{equation}
| \sum_{i,j=1}^{d} b^i(y) \nabla_x^i [u(x) a_{ij}(x)] | \leq \sum_{i,j=1}^{d} |\nabla_x^i u(x)||b^i(y)a_{ij}(x)| + \sum_{i,j=1}^{d} |u(x)||b^i(y)\nabla_x^i a_{ij}(x)| \\
\leq C \max_{1 \leq i \leq d} (\|b^i\|_\infty) (|\nabla u(x)| + |u(x)|)
\end{equation}

where the constant C depends on the curvature of the manifold M.

Then, we have

\begin{equation}
(B.6) \quad \left| \sum_{i,j=1}^{d} \int_{\partial M} \int_{M} b^i(y) \nabla_x^i [u(x) a_{ij}(x)] \tilde{R}_{t}^\infty(x,y) \, dx \, d\tau_y \right|
\end{equation}

\begin{align*}
&\leq C \max_{1 \leq i \leq d} (\|b^i\|_\infty) \int_{\partial M} \int_{M} (|\nabla u(x)| + |u(x)|) \tilde{R}_{t}(x,y) \, dx \, d\tau_y \\
&\leq C \max_{1 \leq i \leq d} (\|b^i\|_\infty) \left(\int_{M} (|\nabla u(x)|^2 + |u(x)|^2) \left(\int_{\partial M} \tilde{R}_{t}(x,y) \, d\tau_y \right) \right) \frac{1}{2} \\
&\leq C t^{-1/4} \max_{1 \leq i \leq d} (\|b^i\|_\infty) \|u\|_{H^1(M)}.
\end{align*}

and

\begin{equation}
(B.7) \quad \left| \int_{M} u(x) \left(\int_{\partial M} \sum_{i,j,m,n=1}^{d} b^i(y) a_{ij}(x) \nabla_x^i a^{mn}(x)(x_m - y_m)(x_n - y_n) \tilde{R}_{t}^\infty(x,y) \, d\tau_y \right) \, dx \right|
\end{equation}

\begin{align*}
&\leq C t \int_{M} |u(x)| \left(\int_{\partial M} \tilde{R}_{t}^\infty(x,y) \, d\tau_y \right) \, dx \leq C t^{3/4} \|u\|_{L^2}.
\end{align*}

Then, the inequality (B.2) is obtained from (B.3), (B.4), (B.5), (B.6) and (B.7).

Now, using Theorem A.3, we have

\begin{equation}
(B.8) \quad \|u\|_{L^2(M)}^2 \leq C \langle u, \mathcal{L} u \rangle \leq C \sqrt{t} \max_{1} (\|b^i\|_\infty) \|u\|_{H^1(M)}.
\end{equation}
Note \(r(x) = \sum_{i=1}^{d} \int_{\partial M} b^i(y)(x_i - y_i) \tilde{R}^x_i(x, y) \, dy \). A direct calculation gives us that
\[\| r(x) \|_{L^2(M)} \leq C t^{1/4} \max_{1 \leq i \leq d} (\| b^i \|_{\infty}), \]
and
\[\| \nabla r(x) \|_{L^2(M)} \leq C t^{-1/4} \max_{1 \leq i \leq d} (\| b^i \|_{\infty}). \]

The integral equation \(-L_t u = r - \bar{r}\) gives that
\[u(x) = v(x) + \frac{t}{w_t(x)} (r(x) - \bar{r}) \]
where
\[v(x) = \frac{1}{w_t(x)} \int_M R_t(x, y) u(y) \, d\mu_y, \quad w_t(x) = \int_M R_t(x, y) \, d\mu_y. \]

By Theorem A.4, we have
\[\| \nabla u \|_{L^2(M)}^2 \leq 2 \| \nabla v \|_{L^2(M)}^2 + 2 t^2 \left\| \nabla \left(\frac{r(x) - \bar{r}}{w_t(x)} \right) \right\|_{L^2(M)}^2 \]
\[\leq C \langle u, L_t u \rangle + C t \| r \|_{L^2(M)}^2 + C t^2 \| \nabla r \|_{L^2(M)}^2 \]
\[\leq C \sqrt{t} \max_{1 \leq i \leq d} (\| b^i \|_{\infty}) \| u \|_{H^1(M)} + C t \| r \|_{L^2(M)}^2 + C t^2 \| \nabla r \|_{L^2(M)}^2 \]
\[\leq C \max_{1 \leq i \leq d} (\| b^i \|_{\infty}) \left(\sqrt{t} \| u \|_{H^1(M)} + C t^{3/2} \right). \]

Using (B.8) and (B.13), we have
\[\| u \|_{H^1(M)}^2 \leq C \max_{1 \leq i \leq d} (\| b^i \|_{\infty}) \left(\sqrt{t} \| u \|_{H^1(M)} + C t^{3/2} \right), \]
which proves the theorem. \(\square \)

Appendix C. Derivation of Eq. (3.19).

Denote \(A(x) = (a_{ij}(x)) \in \mathbb{R}^{d \times d} \). Let \(X = [\partial_1 \Phi, \partial_2 \Phi, \ldots, \partial_m \Phi] \) be an orthonormal basis of the tangent space \(T_x(M) \) at \(x \) and \(Y \) be the orthogonal completion of \(X \) in \(\mathbb{R}^d \). Then we have
\[AX = XC, \quad AY = YD, \]
since the tangent space \(T_x(M) \) is an invariant subspace of \(A(x) \). This gives a decomposition of \(A \)
\[A = P \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} P^{-1}, \quad P = [X, Y], \quad P^{-1} = \begin{bmatrix} (X^T X)^{-1} & X^T \\ (Y^T Y)^{-1} & Y^T \end{bmatrix}. \]
Using these notations, we have

\[D_{ia}^{mn}(y) a_{km}(y) (\partial_i \Phi^k \Phi^j \partial_j \Phi^n) = \text{trace}(D_{i}(A^{-1})AX(X^T X)^{-1}X^T) \]

\[= \text{trace}(D_{i}(A^{-1})XC(X^T X)^{-1}X^T) \]

\[= \text{trace} \left(P D_{i} \left(\begin{bmatrix} C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \right) P^{-1}XC(X^T X)^{-1}X^T \right) \]

\[+ \text{trace} \left(D_{i}(P) \left(\begin{bmatrix} C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \right) P^{-1}XC(X^T X)^{-1}X^T \right) \]

\[+ \text{trace} \left(P \left(\begin{bmatrix} C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \right) D_{i}(P^{-1})XC(X^T X)^{-1}X^T \right). \]

Then, we calculate three terms one by one.

\[\text{trace} \left(P D_{i} \left(\begin{bmatrix} C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \right) P^{-1}XC(X^T X)^{-1}X^T \right) = \text{trace} (D_{i}(C^{-1})C), \]

\[\text{trace} \left(D_{i}(P) \left(\begin{bmatrix} C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \right) P^{-1}XC(X^T X)^{-1}X^T \right) = \text{trace} (D_{i}(X)(X^T X)^{-1}X^T), \]

\[\text{trace} \left(P \left(\begin{bmatrix} C^{-1} & 0 \\ 0 & D^{-1} \end{bmatrix} \right) D_{i}(P^{-1})XC(X^T X)^{-1}X^T \right) = \text{trace} (XD_{i}((X^T X)^{-1}X^T)). \]

Also notice that

\[\text{trace} (D_{i}(X)(X^T X)^{-1}X^T) + \text{trace} (XD_{i}((X^T X)^{-1}X^T)) \]

\[= D_{i} (\text{trace} ((X^T X)^{-1}X^T)) = 0. \]

Combining all the calculations together, we get

\[D_{ia}^{mn}(y) a_{km}(y) (\partial_i \Phi^k \Phi^j \partial_j \Phi^n) = \text{trace} (D_{i}(C^{-1})C) = \frac{1}{\sqrt{\det(C)}} D_{i}(\sqrt{\det(C)}). \]

REFERENCES

diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps.

[8] Q. Du, T. Li, and X. Zhao. A convergent adaptive finite element algorithm for nonlocal diffusion

396, 2013.

2873, 2009.

riemannian surfaces. ESAIM: Control, Optimisation and Calculus of Variations, 23:685–

2014.

[18] R. Lai and H. Zhao. Multi-scale non-rigid point cloud registration using robust sliced-
wasserstein distance via laplace-beltrami eigenmap. to appear in SIAM Journal on Imaging

equations on evolving surfaces and modeling high order geometrical motion. J.

[21] Z. Li and Z. Shi. A convergent point integral method for isotropic elliptic equations on point

[22] Z. Li, Z. Shi, and J. Sun. Point integral method for solving poisson-type equations on mani-
folds from point clouds with convergence guarantees. Communications in Computational

[24] C. Macdonald and S. Ruuth. The implicit closest point method for the numerical so-
2009.

[29] M. Reuter, F. E. Wolter, and N. Peinecke. Laplace-beltrami spectra as ‘shape-dna’ of surfaces

[31] Z. Shi and J. Sun. Convergence of the point integral method for poisson equation on point
cloud. accepted by Research in the Mathematical Sciences, 2017.

traction and hippocampal surface registration using harmonic eigenmap. Technical Report,