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A Harmonic Extension Approach for Collaborative Ranking

Abstract
We present a new perspective on graph-based
methods for collaborative ranking for recom-
mender systems. Unlike user-based or item-
based methods that compute a weighted average
of ratings given by the nearest neighbors, or low-
rank approximation methods using convex op-
timization and the nuclear norm, we formulate
matrix completion as a series of semi-supervised
learning problems, and propagate the known rat-
ings to the missing ones on the user-user or item-
item graph globally. The semi-supervised learn-
ing problems are expressed as Laplace-Beltrami
equations on a manifold, or namely, harmonic
extension, and can be discretized by a point in-
tegral method. We show that our approach does
not impose a low-rank Euclidean subspace on the
data points, but instead minimizes the dimension
of the underlying manifold. Our method, named
LDM (low dimensional manifold), turns out to be
particularly effective in generating rankings of
items, showing decent computational efficiency
and robust ranking quality compared to state-of-
the-art methods.

1. Introduction
Recommender systems are crucial components in con-
temporary e-commerce platforms (Amazon, eBay, Netflix,
etc.), and were popularized by the Netflix challenge. De-
tailed surveys of this field can be found in (Lee et al., 2012;
Ning & Karypis, 2015). Recommendation algorithms are
commonly based on collaborative filtering, or “crowd of
wisdom”, and can be categorized into memory-based and
model-based approaches. Memory-based approaches in-
clude user-based and item-based recommendation (Sarwar
et al., 2001). For example, for a user u, we retrieve the
highly-rated items from the nearest neighbors of u, and
recommend those items that have not been consumed by
u. Memory-based methods are actually based on a graph,
where a user-user or item-item similarity matrix defines the

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

nearest neighbors of each user or item. In contrast, model-
based methods are formulated as matrix completion prob-
lems which assume that the entire user-by-item rating ma-
trix is low-rank (Billsus & Pazzani, 1998), and the goal is
to predict the missing ratings given the observed ratings.
While memory-based methods are typically more computa-
tionally efficient, model-based methods can achieve much
higher quality for collaborative filtering.

Popular model-based methods such as regularized SVD
(Billsus & Pazzani, 1998) minimize the sum-of-squares er-
ror over all the observed ratings. When evaluating the pre-
dictive accuracy of these algorithms, we often divide the
whole data set into a training set and a test set. After obtain-
ing a model on the training set, we evaluate the accuracy of
the model’s prediction on the test set in order to see how
well it generalizes to unseen data. However, the measure
for evaluating success in a practical recommender system
is very different. What we care more about is whether the
top recommended items for a user uwill actually be “liked”
by u. In an experimental setting, the evaluation measure
for success in this context is the resemblance between the
ranked list of top recommended items and the ranked list
of observed ratings in the test set. Thus, this measure that
compares two rankings is more relevant to the performance
in real scenarios. The problem that places priority on the
top recommended items rather than the absolute accuracy
of predicted ratings is referred to as top-N recommendation
(Deshpande & Karypis, 2004), or more recently collabora-
tive ranking (Lee et al., 2014; Park et al., 2015), and is our
focus in this paper.

We start with the matrix completion problem and formu-
late it as a series of semi-supervised learning problems, or
in particular, harmonic extension problems on a manifold
that can be solved by label propagation (Zhu et al., 2003;
Shi et al., 2015). For each item, we want to know the rat-
ings by all the users, and the goal of the semi-supervised
learning problem is to propagate the known labels for this
item (observed ratings) to the unknown labels on the user-
user graph; and reversely, for each user, to propagate the
known labels given by this user to the unknown labels on
the item-item graph.

Without loss of generality, we assume that there exists a
user manifold, denoted asM, which consists of an infinite
number of users. In a user-by-item rating system with n
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items, each user is identified by an n-dimensional vector
that consists of the ratings to n items. Thus, the user man-
ifold M is a submanifold embedded in Rn. For the i-th
item, we define the rating function fi :M→ R that maps
a user into the rating of this item.

One basic observation is that for a fixed item, similar users
should give similar ratings. This implies that the function
fi, 1 ≤ i ≤ n is a smooth function on M. Therefore, it
is natural to find the rating function fi by minimizing the
following energy functional:

E(f) =

∫
M
‖∇Mf(u)‖2du, (1)

where ∇Mf(u) is the gradient at u defined on the man-
ifold M. Using standard variational approaches, mini-
mizing the above functional (1) is reduced to solving the
Laplace-Beltrami equation on the user manifoldM. Then
the Laplace-Beltrami equation can be solved by a novel
point integral method (Shi et al., 2015).

For the harmonic extension model, we also have an inter-
pretation based on the low dimensionality of the user man-
ifold, after which we call our method LDM. The user mani-
fold is a manifold embedded in Rn, and n is usually a large
number. Compared with n, the intrinsic dimension of the
user manifold is typically much smaller. Based on this ob-
servation, we use the dimension of the user manifold as a
regularization to recover the rating matrix. This idea im-
plies the following optimization problem:

min
X∈Rm×n,
M⊂Rn

dim(M), (2)

subject to: PΩ(X) = PΩ(A), U(X) ⊂M,

where dim(M) is the dimension of the manifoldM, and
U(X) is the user set corresponding to the rows of X . Ω =
{(i, j) : user i rated item j} is the index set of the observed
ratings, and PΩ is the projection operator to Ω,

PΩ(X) =

{
xij , (i, j) ∈ Ω,
0, (i, j) /∈ Ω.

By referring to the theory in differential geometry, this op-
timization problem is reduced to the same formulation as
that in harmonic extension (1) which gives our model a ge-
ometric interpretation.

Another important aspect of our proposed method is the
weight matrix that defines the user-user or item-item graph.
Because the information given in the rating matrix is in-
complete, we can only assume that the weight matrix used
in harmonic extension is a good guess. We will propose
an efficient way to construct the weight matrix based on
incomplete data.

Our contribution is summarized as follows:

• We propose an algorithm that exploits manifold struc-
tures to solve the harmonic extension problem for col-
laborative ranking, representing a new perspective on
graph-based methods for recommender systems.

• On real data sets, our method achieves robust ranking
quality with reasonable run-time, compared to state-
of-the-art methods for large-scale recommender sys-
tems.

The rest of this paper is organized as follows. In Section 2,
we formulate the matrix completion problem as harmonic
extension. In Section 3, we describe the point integral
method to rigorously solve the discretized harmonic exten-
sion problem. In Section 4, we show that our approach
seeks to minimize the dimension of the underlying mani-
fold. In Section 5, we describe our more efficient way to
compute the similarity matrix. In Section 6, we empiri-
cally demonstrate the efficiency and ranking quality of our
method. In Section 7, we explain the connection and dif-
ference between our method and previous work. In Section
8, we discuss our proposed method and its implication on
other methods.

Here are some notations we will use. For a vector x =
[x1, · · · , xm]T , we call y = [xi1 , xi2 , · · · , xir ]T a subvec-
tor of length r by extracting the elements of x in the index
set {i1, · · · , ir}, where i1 < i2 < · · · < ir. For a matrix
M , a vector x, integers i, j, and sets of row and column in-
dices S, S′, we use Mi,j ,MS,S′ ,M:,j ,MS,j , xS to denote
an entry of M , a submatrix of M , the j-th column of M ,
a subvector of the j-th column of M , and a subvector of x,
respectively.

2. Harmonic Extension Formulation
Consider a user-by-item rating matrix A = (aij) ∈ Rm×n,
where rows correspond to m users, and columns corre-
spond to n items. The observed ratings are indexed by the
set Ω = {(i, j) : user i rated item j}. Let Ωi = {1 ≤
j ≤ m : (i, j) ∈ Ω}, 1 ≤ i ≤ n. Suppose there exists a
“true” rating matrix A∗ given by an oracle with no missing
entries, which is not known to us, and A|Ω = A∗|Ω.

As mentioned in the introduction, we formulate matrix
completion as a harmonic extension problem on a mani-
fold. Recall the user manifold in Section 1, denoted asM,
which is embedded in Rn. The set of m users in our user-
by-item rating system is represented as U = {uj , 1 ≤ j ≤
m} where uj is the j-th row ofA∗ and U ⊂M is a sample
ofM. Let Ui = {uj ∈ U : j ∈ Ωi} be the collection of
users who rate the i-th item.

Then we compute the rating function fi for all the users by
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minimizing the energy functional in (1):

min
fi∈H1(M)

E(fi) subject to: fi(uj)|Ui
= aij , (3)

where H1 is the Sobolev space. Hence, we need to solve
the following type of optimization problem for n times.

min
f∈H1(M)

E(f) subject to: f(u)|Λ = g(u), (4)

where Λ ⊂M is a point set.

To solve the above optimization problem, we first use the
Bregman iteration to enforce the constraint.

• Solve

fn+1 = arg min
f

E(f) + µ‖f − g + dn‖2L2(Λ), (5)

where ‖f‖2L2(Λ) =
∑
u∈Λ |f(u)|2, dn is a function

defined on Λ.

• Update dn,

dn+1(u) = fn+1(u)− g(u), ∀u ∈ Λ.

• Repeat above process until convergence.

Using a standard variational approach, the solution to (5)
can be reduced to the following Laplace-Beltrami equation:

∆Mf(x)− µ
∑
y∈Λ

δ(x− y)(f(y)− h(y)) = 0, x ∈M,

∂f

∂n
(x) = 0, x ∈ ∂M,

(6)
where δ is the Dirac-δ function inM, h = g−dn is a given
function on Λ, and n is the outer normal vector. That is to
say, the function f that minimizes (4) is a harmonic func-
tion onM\∂M, and (6) is called the harmonic extension
problem in the continuous setting.

If the underlying manifold M (the true rating matrix A∗

in the discrete setting) were known, the n problems in (3)
would be independent with each other and could be solved
individually by (6). However,M is not known, and there-
fore we have to get a good estimate for the operator ∆M
based on fj’s. Our algorithm for solving (3) is described
on a high level in Algorithm 1, where we iteratively update
fj’s and our estimate for ∆M.

In the next section, we use the point integral method (PIM)
to solve the Laplace-Beltrami equation (6).

Remark. The update of fj’s in Algorithm 1 follows the
“Jacobi” scheme. We could also use the “Gauss-Seidel”
scheme, i.e. re-estimate ∆M after the update of each fj ,
but that would be much slower.

Algorithm 1 Algorithm for solving (3)
1: repeat
2: Get estimate for ∆M based on f1, f2, · · · , fn
3: for i = 1 to n do
4: Solve (6) to obtain fi
5: end for
6: until some stopping criterion is satisfied

3. Point Integral Method (PIM)
Integral Equation: The key observation in PIM is that
the Laplace-Beltrami operator has the following integral
approximation:∫

M
wt(x,y)∆Mf(y)dy

≈− 1

t

∫
M

(f(x)− f(y))wt(x,y)dy

+ 2

∫
∂M

∂u(y)

∂n
wt(x,y)dτy, (7)

where wt(x,y) = exp(− |x−y|
2

4t ). The following theorem
gives the accuracy of the integral approximation.

Theorem 3.1. (Shi & Sun, 2014) If f ∈ C3(M) is a
smooth function onM, then for any x ∈M,

‖r(u)‖L2(M) = O(t1/4), (8)

where

r(u) =

∫
M
wt(x,y)∆Mf(y)dy

+
1

t

∫
M

(u(x)− u(y))wt(x,y)dy

− 2

∫
∂M

∂u(y)

∂n
wt(x,y)dτy.

Applying the integral approximation (7) to the Laplace-
Beltrami equation (6), we get an integral equation

1

t

∫
M

(f(x)− f(y))wt(x,y)dy

+ µ
∑
y∈Λ

wt(x,y)(f(y)− h(y)) = 0, (9)

In this integral equation, there are no derivatives, and there-
fore it is easy to discretize over the point cloud.

Discretization: We notice that the closed form of the user
manifoldM is not known, and we only have a sample of
M, i.e. U . Next, we discretize the integral equation (7)
over the point set U .
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Algorithm 2 Harmonic Extension

Input: Initial rating matrix A.
Output: Rating matrix R.

1: Set R = A.
2: repeat
3: Estimate the weight matrix W = (wij) from the

user set U (Algorithm 3).
4: Compute the graph Laplacian matrix: L = D −W
5: for i = 1 to n do
6: repeat
7: Solve the following linear systems

Lfi + µ̄W:,Ui
(fi)Ui

= µ̄W:,Ui
hUi

,

where h = g − dn.
8: Update dn,

dn+1 = dn + fn+1 − g

9: until some stopping criterion for the Bregman it-
erations is satisfied

10: end for
11: rij = fi(uj) and R = (rij).
12: until some stopping criterion is satisfied

Assume that the point set U is uniformly distributed over
M. The integral equation can be discretized easily, as fol-
lows:

|M|
m

m∑
j=1

wt(xi,xj)(f(xi)− f(xj))+

µt
∑
y∈Λ

wt(xi,y)(f(y)− h(y)) = 0 (10)

where |M| is the volume of the manifoldM.

We can rewrite (10) in the matrix form.

Lf + µ̄W:,ΛfΛ = µ̄W:,Λh. (11)

where h = (h1, · · · , hm) and µ̄ = µtm
|M| . L is a m × m

matrix which is given as

L = D −W (12)

where W = (wij), i, j = 1, · · · ,m is the weight matrix
and D = diag(di) with di =

∑m
j=1 wij .

Remark. In the harmonic extension approach, we use a
continuous formulation based on the underlying user man-
ifold. And the point integral method is used to solve the
Laplace-Beltrami equation on the manifold. If a graph
model were used at the beginning, the natural choice for
harmonic extension would be the graph Laplacian. How-
ever, it has been observed that the graph Laplacian is not

consisitent in solving the harmonic extension problem (Shi
et al., 2015; Osher et al., 2016), and PIM gives much better
results.

Remark. The optimization problem we defined in (1) can
be viewed as a continuous analog of the discrete harmonic
extension problem (Zhu et al., 2003), which we write in our
notations:

min
fi

n∑
j,j′=1

wjj′ ((fi)j − (fi)j′)
2 subject to: (fi)Ui = AUi,i.

(13)
The formulation (13) in the context of collaborative rank-
ing can be seen as minimizing the weighted sum of squared
error in pairwise ranking. This form of loss function con-
siders all the possible pairwise rankings of items, which is
different from the loss function in previous work on collab-
orative ranking (Lee et al., 2014; Park et al., 2015):∑

j,j′∈Ui

L ([aji − aj′i]− [(fi)j − (fi)j′ ]) , (14)

where L is a loss function such as hinge loss and exponen-
tial loss. Only the pairwise rankings of items in the training
set are considered in (14).

4. Low Dimensional Manifold (LDM)
Interpretation

In this section, we emphasize the other interpretation of our
method based on the low dimensionality of the user man-
ifold. In the user-by-item rating system, a user is repre-
sented by an n-dimensional vector that consists of the rat-
ings to n items, and the user manifold is a manifold em-
bedded in Rn. Usually, n, the number of items, is a large
number in the order of 103 ∼ 106. The intrinsic dimen-
sion of the user manifold is much less than n. Based on
this observation, it is natural to recover the rating matrix by
looking for the user manifold with the lowest dimension,
which implies the optimization problem in (2):

min
X∈Rm×n,
M⊂Rn

dim(M),

subject to: PΩ(X) = PΩ(A), U(X) ⊂M.

where dim(M) is the dimension of the manifoldM, and
U(X) is the user set corresponding to the rows of X .

Next, we need to give a mathematical expression to com-
pute dim(M). Here we assumeM is a smooth manifold
embedded in Rn. Let αi, i = 1, · · · , d be the coordinate
functions onM, i.e.

αi(x) = xi, ∀x = (x1, · · · , xn) ∈M (15)

Using differential geometry, we have the following formula
(Osher et al., 2016).
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Proposition 4.1. LetM be a smooth submanifold isomet-
rically embedded in Rn. For any x ∈M,

dim(M) =

n∑
i=1

‖∇Mαi(x)‖2

where ∇M is the gradient in the manifoldM.

We can clearly see that αi corresponds to the rating func-
tion fi. Using the above proposition, the manifold dimen-
sion minimization problem (2) can be rewritten as

min
X∈Rm×n,

M⊂Rd

d∑
i=1

‖∇Mfi‖2L2(M), (16)

subject to: fi(xj)|Ui = aij , U(X) ⊂M,

where

‖∇Mfi‖L2(M) =

(∫
M
‖∇Mfi(x)‖2dx

)1/2

. (17)

This is the same optimization problem we solved in Section
2 and Section 3.

5. Weight Matrix
The weight matrix W plays an important role in our algo-
rithm as well as other graph-based approaches (Zhu et al.,
2003; Sarwar et al., 2001; Kalofolias et al., 2014). We em-
ploy the typical user-user or item-item graph with cosine
similarity used in existing memory-based approaches for
recommendation (Sarwar et al., 2001). However, we have
made substantial changes to make the procedure efficient
for large sparse rating matrices. Our algorithm for build-
ing the weight matrix is described in detail in Algorithm
3. Again, we consider the user-user graph without loss of
generality.

First, as usual, we can only afford to compute and store
a sparse nearest-neighbor weight matrix. To get the K
nearest neighbors for a target user u, traditional algorithms
in memory-based methods require computing the distances
between u and every other user, and selecting theK closest
ones, where most of the computation is wasted ifK << m.
In our algorithm, we first identify the nearest neighbors
approximately, without computing the actual distances or
similarities, and then compute the similarities between u
and its nearest neighbors only. We use a binary rating ma-
trix RB that records “rated or not-rated” information (line
1-2), and determine the K nearest neighbors using an kd-
tree based approximate nearest neighbor algorithm (line 3,
line 5) (Muja & Lowe, 2009). That is to say, two users who
have rated similar sets of movies are more likely to be con-
sidered to be in each other’s neighborhood, regardless of
their numeric ratings for those movies. Neither of the ways

to build the kd-tree and to find nearest neighbors based on
the tree are as precise as a naı̈ve search; however, empirical
results in the next section have shown that our approximate
strategy does not compromise the quality.

Second, we extended the VLFeat package (Vedaldi & Fulk-
erson, 2008) to enable building a kd-tree from a sparse
data matrix (in our case, RB) and querying the tree with
sparse vectors. kd-tree uses a space partitioning scheme
for efficient neighbor search (Bentley, 1975). For high-
dimensional data, we employ the greedy way that chooses
the most varying dimension for space partitioning at each
step of building the tree (Muja & Lowe, 2009), and the
procedure terminates when each leaf partition has one data
point. Thus, the complexity of building the tree is not
exponential, contrary to common understanding; and the
practical performance of kd-tree can be very efficient (Zhu
et al., 2015) and better than that of locality sensitive hash-
ing (Andoni & Indyk, 2008; O’Hara & Draper, 2013). For
example, in our case with m data points in n dimensions,
the complexity of building the tree is O(m), rather than
O(2n). In addition, when querying the tree, we put an up-
per bound D on the maximum number of distance com-
parisons, and therefore the overall complexity of finding K
nearest neighbors for all them data points isO(Dm logK)
(the logK factor comes from maintaining a heap data
structure for the K nearest neighbors).

Note that the resulting graph is not symmetric. Also the
cosine similarity for two data points with incomplete infor-
mation is defined by using the co-rated items only (Algo-
rithm 3, line 8-9) (Sarwar et al., 2001).

6. Experiments
In this section, we evaluate our proposed method LDM in
terms of both run-time and ranking quality. Since the vol-
ume of literature on recommender systems, collaborative
filtering, and matrix completion is huge, we select only a
few existing methods to compare with. All the experiments
are run on a Linux laptop with one Intel i7-5600U CPU (4
physical threads) and 8 GB memory.

6.1. Data Sets

We use three MovieLens1 data sets in our experiments:
MovieLens-100k, MovieLens-1m, and MovieLens-10m. In
each of the data sets, each user has at least 20 ratings. Fol-
lowing the convention in previous work on collaborative
ranking, we randomly select N ratings for each user as the
training set, and the other ratings were used for testing. To
keep at least 10 ratings in the testing set for each user, we
remove the users with fewer thanN+10 ratings. After this
preprocessing, we can generate several versions of these

1http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/
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Algorithm 3 Building weight matrix from incomplete rat-
ing data

Input: Incomplete rating matrix R ∈ Rm×n, number of
nearest neighbors K

1: Generate binary rating matrix RB ∈ Rm×n:

(RB)j,j′ =

{
1, Rj,j′ is not missing
0, Rj,j′ is missing

2: Normalize each row of RB such that ‖(RB)j,:‖2 = 1,
∀j, 1 ≤ j ≤ m

3: Build a kd-tree on the data points (rows) in RB
4: Initialize a sparse matrix W ← 0m×m

5: for j = 1 to m do
6: NB ← The set of K approximate nearest neighbors

of (RB)j,:, found by querying the kd-tree
7: for j′ ∈ NB (j′ 6= j) do
8: Set of co-rated items C ←

{i : Rj,i is not missing, and Rj′,i is not missing}
9: Wj,j′ ← cosine(Rj,C , Rj′,C)

10: end for
11: end for
Output: Sparse weight matrix W ∈ Rm×m

Table 1. Statistics of the data sets in our experiments. N is the
number of ratings in the training set for each user. The total num-
ber of ratings in the training set is N×(# users).

Data set # users # items # ratings

MovieLens-100k N = 10 943 1,682 100,000
N = 20 744 1,682 95,269

MovieLens-1m
N = 10 6,040 3,706 1,000,209
N = 20 5,289 3,701 982,040
N = 50 3,938 3,677 924,053

MovieLens-10m

N = 10 69,878 10,677 10,000,054
N = 20 57,534 10,675 9,704,223
N = 50 38,604 10,672 8,897,688
N = 100 24,328 10,666 7,730,011

data sets with different N ’s, whose information is summa-
rized in Table 1.

6.2. Methods for Comparison

We compare our LDM method with singular value decom-
position (SVD) as a baseline, and two state-of-the-art meth-
ods that are designed specifically for collaborative ranking.
All the three methods for comparison optimize a pairwise
ranking loss function. We do not perform hyperparame-
ter selection on a separate validation set because it is time-
consuming, but we investigate the effect of the hyperpa-
rameters in Section 6.4; and in Section 6.5, we use a fixed
set of hyperparameters that can achieve a good balance be-
tween run-time and ranking quality, which are found em-

pirically across several data sets. We list these methods
below (their program options that will be used in Section
6.5 is in the footnote):

• SVD: We use the Java implementation of ranking-
based SVD in the PREA toolkit2,3. This version uses
gradient descent to optimize the ranking-based loss
function (14), as opposed to the squared loss function
in regularized SVD.

• LCR: Local collaborative ranking (Lee et al., 2014), as
implemented in the PREA toolkit4.

• AltSVM: Alternating support vector machine (Park
et al., 2015), as implemented in the collranking
package5. We employ the default configurations.

Lastly, our proposed method LDM (Algorithm 2) is im-
plemented in Matlab, and the construction and querying of
the kd-tree (Algorithm 3) is implemented in C, for which
we extended the VLFeat6 package to build a kd-tree with
a sparse input matrix efficiently. In Algorithm 2, we run
one inner iteration and one outer iteration only, since we
empirically found that the weight matrix constructed from
the incomplete input ratings by Algorithm 3 is often good
enough for the algorithm to converge in one iteration. Al-
gorithm 2 typically accounts for most (∼ 95%) of the run-
time in our method.

All the programs except SVD use 4 threads in our experi-
ments, and are applied to the same training and testing ran-
dom splits.

6.3. Evaluation Measure

We evaluate the ranking quality by normalized discounted
cumulative gain (NDCG) @K (Järvelin & Kekäläinen,
2002), averaged over all the users. Given a ranked list of
t items i1, · · · , it and their ground-truth relevance score
ri1 , · · · , rit , the DCG@K score (K ≤ t) is computed as

DCG@K(i1, · · · , it) =

K∑
j=1

2rij − 1

log2(j + 1)
. (18)

Then, we sort the list of items in the decreasing order of
the relevance score and obtain the list i∗1, · · · , i∗t , where
ri∗1 ≥ · · · ≥ ri∗t , and this sorted list achieves the max-
imum DCG@K score over all the possible permutations.

2http://prea.gatech.edu
3The command-line options for SVD is -a ranksvd

exp add 5 5 25.
4The command-line options for LCR is -a pgllorma

exp add 5 5 13.
5https://github.com/dhpark22/collranking
6http://www.vlfeat.org/

http://prea.gatech.edu
https://github.com/dhpark22/collranking
http://www.vlfeat.org/
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Figure 1. Ranking quality NDCG@10 (Section 6.3) as a function of the number of nearest neighbors (k) when constructing the kd-tree
and the maximum number of comparisons (D) when querying the kd-tree. k must not be larger than D.
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Figure 2. Ranking quality NDCG@10 (Section 6.3) vs. run-time under various hyperparameters for each of the methods compared.
LCR and SVD are time-consuming and therefore their results with multiple sets of hyperparameters are not available on MovieLens-1m.

The NDCG score is defined as the normalized version of
(18):

NDCG@K(i1, · · · , it) =
DCG@K(i1, · · · , it)
DCG@K(i∗1, · · · , i∗t )

. (19)

We only evaluate NDCG@10 due to limited space. Note
that for a user u, the list of items that is provided to compute
(19) is all the items with observed ratings given by u in the
test set, not only the highest-ranking ones.

In contrast to previous work on top-N recommender sys-
tems (Karypis, 2001; Deshpande & Karypis, 2004), we
discourage the use of Precision@K in the context of col-
laborative ranking for recommender systems, which mea-
sures the proportion of actually rated items out of the top
K items in the ranked list of all the items in the data
set. Contemporary recommender systems typically use nu-
meric ratings rather than binary ratings. In a 1-to-5 rating
system, for example, a 1-star item should be less favorable
than an unrated item with the expected 3-star rating. How-
ever, a recommender system that ranks 1-star items at the
top positions would get a higher Precision@K score than
one that ranks unrated items at the top positions. Thus,
Precision@K is not a valid measure for collaborative rank-
ing with a non-binary rating system.

6.4. Effect of Parameter Selection

First, we examine the influence of the kd-tree parameters
on the performance of LDM, namely the number of nearest
neighbors k and the maximum number of distance compar-
isons D. Fig. 1 shows the change in NDCG@10 when
varying k and D on several small data sets (due to time
constraints). In general, the ranking quality is much bet-
ter with moderately large k,D values than with very small
k,D values, but does not improve much when further in-
creasing k and D. Therefore, we can use sufficiently large
k,D values to get good ranking quality, but not too large to
be computationally efficient. In the experimental compar-
ison in Section 6.5, we fix the parameters to k = 64 and
D = 256.

Next, we vary the hyperparameters in each of the four
methods, and compare simultaneously the ranking quality
and run-time under different hyperparameters. Ideally, a
good performance of a collaborative ranking method means
producing higher NDCG@10 scores in less time. Fig. 2
plots NDCG@10 against the run-time for several small
data sets (due to time constraints). LDM achieves the high-
est NDCG@10 in a reasonable amount of time compared
to the other methods. AltSVM is efficient but produces un-
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Table 2. Benchmarking results of ranking quality NDCG@10 (Section 6.3) and run-time for all the compared methods. N is the number
of ratings in the training set for each user.

NDCG@10 Time (seconds)
SVD LCR AltSVM LDM SVD LCR AltSVM LDM

MovieLens-1m, N = 10 0.6836 0.7447 0.6680 0.7295 844.4 254.2 3.6 61.1
MovieLens-1m, N = 20 0.6758 0.7428 0.6879 0.7404 843.3 437.3 6.8 52.3
MovieLens-1m, N = 50 0.6178 0.7470 0.7730 0.7527 730.5 1168.8 53.0 37.0
MovieLens-10m, N = 10 0.6291 0.6866 0.6536 0.7077 24913.4 4544.4 61.2 1496.3
MovieLens-10m, N = 20 0.6201 0.6899 0.7208 0.7213 14778.5 6823.5 275.4 1653.1
MovieLens-10m, N = 50 0.5731 0.6830 0.7507 0.7286 10899.1 14668.5 648.4 1295.0
MovieLens-10m, N = 100 0.5328 0.7125 0.7719 0.7349 14648.5 4289.1 1411.2 832.0

satisfactory ranking quality, which is also sensitive to its
hyperparameters. For LCR, the ranking quality is accept-
able but it takes considerably longer time, especially when
the size of training set increases. On MovieLens-100k
(N = 20), SVD and LDM achieve similar NDCG@10
scores but LDM costs much shorter run-time.

6.5. Results

Now we fix the hyperparameters as described in Section
6.2. Table 2 reports the run-time and NDCG@10 scores
for all the compared methods on the larger data sets. LDM
does not achieve the highest NDCG@10 scores in every
case, but produces robust ranking quality with decent run-
time (except MovieLens-10m, N = 50). For LCR, the
time cost increases dramatically on larger data sets, and its
program did not finish within a few hours for MovieLens-
10m. AltSVM achieves superior ranking quality when the
number of training ratings N is large, but its performance
is sensitive to the number of iterations, which in turn de-
pends on the data set and the given tolerance parameter.
We conclude that LDM is an overall competitive method
that is efficient and robust to hyperparameters and the un-
derlying data sets. Also, LDM has particular advantages
when the available information is relatively few, i.e. when
N is small, which we consider is a more difficult problem
than the cases with richer training information.

We can clearly see that the run-time of LDM increases with
the number of users (due to the reliance on the user-user
similarity matrix, as expected), while the run-time of LCR
and AltSVM increases with the number of ratings in the
training set. Further optimizing the code for LDM is an
important direction in our future work to make it efficient
for large-scale data sets.

We note that our method predicts all the missing ratings in
the label propagation process, which is included in the tim-
ing of LDM, and therefore our methods takes a negligible
amount of time for testing, especially in the real scenario
where a recommendation algorithm would have to predict
the ratings for all the items and return the top-rated ones to
the user.

7. Related Work
Both user-based and item-based collaborative filtering
(Breese et al., 1998; Sarwar et al., 2001) can be consid-
ered as graph-based label propagation methods. The idea
of discrete harmonic extension for semi-supervised learn-
ing in general was originally proposed in (Zhu et al., 2003).
Graph-based methods were recently considered for matrix
completion (Kalofolias et al., 2014) and top-N recommen-
dation (Zhang et al., 2009) as well. Given all the existing
work, what we have presented is a continuous harmonic
extension formulation for label propagation and a rigorous
manifold learning algorithm for collaborative ranking.

8. Conclusion and Discussion
In this paper, we have proposed a novel perspective on
graph-based methods for matrix completion and collabora-
tive ranking. For each item, we view the user-user graph as
a partially labeled data set (or vice versa), and our method
propagates the known labels to the unlabeled graph nodes
through the graph edges. The continuous harmonic exten-
sion problem associated with the above semi-supervised
learning problem is defined on a user or item manifold
solved by a point integral method. Our formulation can be
seen as minimizing the dimension of the user or item man-
ifold, and thus builds a smooth model for the users or items
but with higher complexity than low-rank matrix approxi-
mation. Also, our method can be fully parallelized on dis-
tributed machines, since the linear systems that need to be
solved for all the items are independent with one another.
Experimental results have shown that our method has par-
ticular strength when the number of available ratings in the
training set is small, which makes it promising when com-
bined with other state-of-the-art methods like AltSVM and
helpful for resolving the cold-start issue. Our formulation
for harmonic extension in the context of matrix completion
can be extended to include other constraints or regulariza-
tion terms and side information as well. An important di-
rection is to further improve the efficiency of the algorithm
and compare it with recent large-scale matrix completion
methods (Yun et al., 2014; Zhuang et al., 2013).
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