
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

A Harmonic Extension Approach for Collaborative Ranking

Abstract
We present a new perspective on graph-based
methods for collaborative ranking for recom-
mender systems. Unlike user-based or item-
based methods that compute a weighted average
of ratings given by the nearest neighbors, or low-
rank approximation methods using convex op-
timization and the nuclear norm, we formulate
matrix completion as a series of semi-supervised
learning problems, and propagate the known rat-
ings to the missing ones on the user-user or item-
item graph globally. The semi-supervised learn-
ing problems are expressed as Laplace-Beltrami
equations on a manifold, or namely, harmonic
extension, and can be discretized by a point in-
tegral method. We show that our approach does
not impose a low-rank Euclidean subspace on the
data points, but instead minimizes the dimension
of the underlying manifold. Our method, named
LDM (low dimensional manifold), turns out to be
particularly effective in generating rankings of
items, showing decent computational efficiency
and robust ranking quality compared to state-of-
the-art methods.

1. Introduction
Recommender systems are crucial components in con-
temporary e-commerce platforms (Amazon, eBay, Netflix,
etc.), and were popularized by the Netflix challenge. De-
tailed surveys of this field can be found in (Lee et al., 2012;
Ning & Karypis, 2015). Recommendation algorithms are
commonly based on collaborative filtering, or “crowd of
wisdom”, and can be categorized into memory-based and
model-based approaches. Memory-based approaches in-
clude user-based and item-based recommendation (Sarwar
et al., 2001). For example, for a user u, we retrieve the
highly-rated items from the nearest neighbors of u, and
recommend those items that have not been consumed by
u. Memory-based methods are actually based on a graph,
where a user-user or item-item similarity matrix defines the

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

nearest neighbors of each user or item. In contrast, model-
based methods are formulated as matrix completion prob-
lems which assume that the entire user-by-item rating ma-
trix is low-rank (Billsus & Pazzani, 1998), and the goal is
to predict the missing ratings given the observed ratings.
While memory-based methods are typically more computa-
tionally efficient, model-based methods can achieve much
higher quality for collaborative filtering.

Popular model-based methods such as regularized SVD
(Billsus & Pazzani, 1998) minimize the sum-of-squares er-
ror over all the observed ratings. When evaluating the pre-
dictive accuracy of these algorithms, we often divide the
whole data set into a training set and a test set. After obtain-
ing a model on the training set, we evaluate the accuracy of
the model’s prediction on the test set in order to see how
well it generalizes to unseen data. However, the measure
for evaluating success in a practical recommender system
is very different. What we care more about is whether the
top recommended items for a user uwill actually be “liked”
by u. In an experimental setting, the evaluation measure
for success in this context is the resemblance between the
ranked list of top recommended items and the ranked list
of observed ratings in the test set. Thus, this measure that
compares two rankings is more relevant to the performance
in real scenarios. The problem that places priority on the
top recommended items rather than the absolute accuracy
of predicted ratings is referred to as top-N recommendation
(Deshpande & Karypis, 2004), or more recently collabora-
tive ranking (Lee et al., 2014; Park et al., 2015), and is our
focus in this paper.

We start with the matrix completion problem and formu-
late it as a series of semi-supervised learning problems, or
in particular, harmonic extension problems on a manifold
that can be solved by label propagation (Zhu et al., 2003;
Shi et al., 2015). For each item, we want to know the rat-
ings by all the users, and the goal of the semi-supervised
learning problem is to propagate the known labels for this
item (observed ratings) to the unknown labels on the user-
user graph; and reversely, for each user, to propagate the
known labels given by this user to the unknown labels on
the item-item graph.

Without loss of generality, we assume that there exists a
user manifold, denoted asM, which consists of an infinite
number of users. In a user-by-item rating system with n

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

A Harmonic Extension Approach for Collaborative Ranking

items, each user is identified by an n-dimensional vector
that consists of the ratings to n items. Thus, the user man-
ifold M is a submanifold embedded in Rn. For the i-th
item, we define the rating function fi :M→ R that maps
a user into the rating of this item.

One basic observation is that for a fixed item, similar users
should give similar ratings. This implies that the function
fi, 1 ≤ i ≤ n is a smooth function on M. Therefore, it
is natural to find the rating function fi by minimizing the
following energy functional:

E(f) =

∫
M
‖∇Mf(u)‖2du, (1)

where ∇Mf(u) is the gradient at u defined on the man-
ifold M. Using standard variational approaches, mini-
mizing the above functional (1) is reduced to solving the
Laplace-Beltrami equation on the user manifoldM. Then
the Laplace-Beltrami equation can be solved by a novel
point integral method (Shi et al., 2015).

For the harmonic extension model, we also have an inter-
pretation based on the low dimensionality of the user man-
ifold, after which we call our method LDM. The user mani-
fold is a manifold embedded in Rn, and n is usually a large
number. Compared with n, the intrinsic dimension of the
user manifold is typically much smaller. Based on this ob-
servation, we use the dimension of the user manifold as a
regularization to recover the rating matrix. This idea im-
plies the following optimization problem:

min
X∈Rm×n,
M⊂Rn

dim(M), (2)

subject to: PΩ(X) = PΩ(A), U(X) ⊂M,

where dim(M) is the dimension of the manifoldM, and
U(X) is the user set corresponding to the rows of X . Ω =
{(i, j) : user i rated item j} is the index set of the observed
ratings, and PΩ is the projection operator to Ω,

PΩ(X) =

{
xij , (i, j) ∈ Ω,
0, (i, j) /∈ Ω.

By referring to the theory in differential geometry, this op-
timization problem is reduced to the same formulation as
that in harmonic extension (1) which gives our model a ge-
ometric interpretation.

Another important aspect of our proposed method is the
weight matrix that defines the user-user or item-item graph.
Because the information given in the rating matrix is in-
complete, we can only assume that the weight matrix used
in harmonic extension is a good guess. We will propose
an efficient way to construct the weight matrix based on
incomplete data.

Our contribution is summarized as follows:

• We propose an algorithm that exploits manifold struc-
tures to solve the harmonic extension problem for col-
laborative ranking, representing a new perspective on
graph-based methods for recommender systems.

• On real data sets, our method achieves robust ranking
quality with reasonable run-time, compared to state-
of-the-art methods for large-scale recommender sys-
tems.

The rest of this paper is organized as follows. In Section 2,
we formulate the matrix completion problem as harmonic
extension. In Section 3, we describe the point integral
method to rigorously solve the discretized harmonic exten-
sion problem. In Section 4, we show that our approach
seeks to minimize the dimension of the underlying mani-
fold. In Section 5, we describe our more efficient way to
compute the similarity matrix. In Section 6, we empiri-
cally demonstrate the efficiency and ranking quality of our
method. In Section 7, we explain the connection and dif-
ference between our method and previous work. In Section
8, we discuss our proposed method and its implication on
other methods.

Here are some notations we will use. For a vector x =
[x1, · · · , xm]T , we call y = [xi1 , xi2 , · · · , xir]T a subvec-
tor of length r by extracting the elements of x in the index
set {i1, · · · , ir}, where i1 < i2 < · · · < ir. For a matrix
M , a vector x, integers i, j, and sets of row and column in-
dices S, S′, we use Mi,j ,MS,S′ ,M:,j ,MS,j , xS to denote
an entry of M , a submatrix of M , the j-th column of M ,
a subvector of the j-th column of M , and a subvector of x,
respectively.

2. Harmonic Extension Formulation
Consider a user-by-item rating matrix A = (aij) ∈ Rm×n,
where rows correspond to m users, and columns corre-
spond to n items. The observed ratings are indexed by the
set Ω = {(i, j) : user i rated item j}. Let Ωi = {1 ≤
j ≤ m : (i, j) ∈ Ω}, 1 ≤ i ≤ n. Suppose there exists a
“true” rating matrix A∗ given by an oracle with no missing
entries, which is not known to us, and A|Ω = A∗|Ω.

As mentioned in the introduction, we formulate matrix
completion as a harmonic extension problem on a mani-
fold. Recall the user manifold in Section 1, denoted asM,
which is embedded in Rn. The set of m users in our user-
by-item rating system is represented as U = {uj , 1 ≤ j ≤
m} where uj is the j-th row ofA∗ and U ⊂M is a sample
ofM. Let Ui = {uj ∈ U : j ∈ Ωi} be the collection of
users who rate the i-th item.

Then we compute the rating function fi for all the users by

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A Harmonic Extension Approach for Collaborative Ranking

minimizing the energy functional in (1):

min
fi∈H1(M)

E(fi) subject to: fi(uj)|Ui
= aij , (3)

where H1 is the Sobolev space. Hence, we need to solve
the following type of optimization problem for n times.

min
f∈H1(M)

E(f) subject to: f(u)|Λ = g(u), (4)

where Λ ⊂M is a point set.

To solve the above optimization problem, we first use the
Bregman iteration to enforce the constraint.

• Solve

fn+1 = arg min
f

E(f) + µ‖f − g + dn‖2L2(Λ), (5)

where ‖f‖2L2(Λ) =
∑
u∈Λ |f(u)|2, dn is a function

defined on Λ.

• Update dn,

dn+1(u) = fn+1(u)− g(u), ∀u ∈ Λ.

• Repeat above process until convergence.

Using a standard variational approach, the solution to (5)
can be reduced to the following Laplace-Beltrami equation:

∆Mf(x)− µ
∑
y∈Λ

δ(x− y)(f(y)− h(y)) = 0, x ∈M,

∂f

∂n
(x) = 0, x ∈ ∂M,

(6)
where δ is the Dirac-δ function inM, h = g−dn is a given
function on Λ, and n is the outer normal vector. That is to
say, the function f that minimizes (4) is a harmonic func-
tion onM\∂M, and (6) is called the harmonic extension
problem in the continuous setting.

If the underlying manifold M (the true rating matrix A∗

in the discrete setting) were known, the n problems in (3)
would be independent with each other and could be solved
individually by (6). However,M is not known, and there-
fore we have to get a good estimate for the operator ∆M
based on fj’s. Our algorithm for solving (3) is described
on a high level in Algorithm 1, where we iteratively update
fj’s and our estimate for ∆M.

In the next section, we use the point integral method (PIM)
to solve the Laplace-Beltrami equation (6).

Remark. The update of fj’s in Algorithm 1 follows the
“Jacobi” scheme. We could also use the “Gauss-Seidel”
scheme, i.e. re-estimate ∆M after the update of each fj ,
but that would be much slower.

Algorithm 1 Algorithm for solving (3)
1: repeat
2: Get estimate for ∆M based on f1, f2, · · · , fn
3: for i = 1 to n do
4: Solve (6) to obtain fi
5: end for
6: until some stopping criterion is satisfied

3. Point Integral Method (PIM)
Integral Equation: The key observation in PIM is that
the Laplace-Beltrami operator has the following integral
approximation:∫

M
wt(x,y)∆Mf(y)dy

≈− 1

t

∫
M

(f(x)− f(y))wt(x,y)dy

+ 2

∫
∂M

∂u(y)

∂n
wt(x,y)dτy, (7)

where wt(x,y) = exp(− |x−y|
2

4t). The following theorem
gives the accuracy of the integral approximation.

Theorem 3.1. (Shi & Sun, 2014) If f ∈ C3(M) is a
smooth function onM, then for any x ∈M,

‖r(u)‖L2(M) = O(t1/4), (8)

where

r(u) =

∫
M
wt(x,y)∆Mf(y)dy

+
1

t

∫
M

(u(x)− u(y))wt(x,y)dy

− 2

∫
∂M

∂u(y)

∂n
wt(x,y)dτy.

Applying the integral approximation (7) to the Laplace-
Beltrami equation (6), we get an integral equation

1

t

∫
M

(f(x)− f(y))wt(x,y)dy

+ µ
∑
y∈Λ

wt(x,y)(f(y)− h(y)) = 0, (9)

In this integral equation, there are no derivatives, and there-
fore it is easy to discretize over the point cloud.

Discretization: We notice that the closed form of the user
manifoldM is not known, and we only have a sample of
M, i.e. U . Next, we discretize the integral equation (7)
over the point set U .

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A Harmonic Extension Approach for Collaborative Ranking

Algorithm 2 Harmonic Extension

Input: Initial rating matrix A.
Output: Rating matrix R.

1: Set R = A.
2: repeat
3: Estimate the weight matrix W = (wij) from the

user set U (Algorithm 3).
4: Compute the graph Laplacian matrix: L = D −W
5: for i = 1 to n do
6: repeat
7: Solve the following linear systems

Lfi + µ̄W:,Ui
(fi)Ui

= µ̄W:,Ui
hUi

,

where h = g − dn.
8: Update dn,

dn+1 = dn + fn+1 − g

9: until some stopping criterion for the Bregman it-
erations is satisfied

10: end for
11: rij = fi(uj) and R = (rij).
12: until some stopping criterion is satisfied

Assume that the point set U is uniformly distributed over
M. The integral equation can be discretized easily, as fol-
lows:

|M|
m

m∑
j=1

wt(xi,xj)(f(xi)− f(xj))+

µt
∑
y∈Λ

wt(xi,y)(f(y)− h(y)) = 0 (10)

where |M| is the volume of the manifoldM.

We can rewrite (10) in the matrix form.

Lf + µ̄W:,ΛfΛ = µ̄W:,Λh. (11)

where h = (h1, · · · , hm) and µ̄ = µtm
|M| . L is a m × m

matrix which is given as

L = D −W (12)

where W = (wij), i, j = 1, · · · ,m is the weight matrix
and D = diag(di) with di =

∑m
j=1 wij .

Remark. In the harmonic extension approach, we use a
continuous formulation based on the underlying user man-
ifold. And the point integral method is used to solve the
Laplace-Beltrami equation on the manifold. If a graph
model were used at the beginning, the natural choice for
harmonic extension would be the graph Laplacian. How-
ever, it has been observed that the graph Laplacian is not

consisitent in solving the harmonic extension problem (Shi
et al., 2015; Osher et al., 2016), and PIM gives much better
results.

Remark. The optimization problem we defined in (1) can
be viewed as a continuous analog of the discrete harmonic
extension problem (Zhu et al., 2003), which we write in our
notations:

min
fi

n∑
j,j′=1

wjj′ ((fi)j − (fi)j′)
2 subject to: (fi)Ui = AUi,i.

(13)
The formulation (13) in the context of collaborative rank-
ing can be seen as minimizing the weighted sum of squared
error in pairwise ranking. This form of loss function con-
siders all the possible pairwise rankings of items, which is
different from the loss function in previous work on collab-
orative ranking (Lee et al., 2014; Park et al., 2015):∑

j,j′∈Ui

L ([aji − aj′i]− [(fi)j − (fi)j′]) , (14)

where L is a loss function such as hinge loss and exponen-
tial loss. Only the pairwise rankings of items in the training
set are considered in (14).

4. Low Dimensional Manifold (LDM)
Interpretation

In this section, we emphasize the other interpretation of our
method based on the low dimensionality of the user man-
ifold. In the user-by-item rating system, a user is repre-
sented by an n-dimensional vector that consists of the rat-
ings to n items, and the user manifold is a manifold em-
bedded in Rn. Usually, n, the number of items, is a large
number in the order of 103 ∼ 106. The intrinsic dimen-
sion of the user manifold is much less than n. Based on
this observation, it is natural to recover the rating matrix by
looking for the user manifold with the lowest dimension,
which implies the optimization problem in (2):

min
X∈Rm×n,
M⊂Rn

dim(M),

subject to: PΩ(X) = PΩ(A), U(X) ⊂M.

where dim(M) is the dimension of the manifoldM, and
U(X) is the user set corresponding to the rows of X .

Next, we need to give a mathematical expression to com-
pute dim(M). Here we assumeM is a smooth manifold
embedded in Rn. Let αi, i = 1, · · · , d be the coordinate
functions onM, i.e.

αi(x) = xi, ∀x = (x1, · · · , xn) ∈M (15)

Using differential geometry, we have the following formula
(Osher et al., 2016).

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A Harmonic Extension Approach for Collaborative Ranking

Proposition 4.1. LetM be a smooth submanifold isomet-
rically embedded in Rn. For any x ∈M,

dim(M) =

n∑
i=1

‖∇Mαi(x)‖2

where ∇M is the gradient in the manifoldM.

We can clearly see that αi corresponds to the rating func-
tion fi. Using the above proposition, the manifold dimen-
sion minimization problem (2) can be rewritten as

min
X∈Rm×n,

M⊂Rd

d∑
i=1

‖∇Mfi‖2L2(M), (16)

subject to: fi(xj)|Ui = aij , U(X) ⊂M,

where

‖∇Mfi‖L2(M) =

(∫
M
‖∇Mfi(x)‖2dx

)1/2

. (17)

This is the same optimization problem we solved in Section
2 and Section 3.

5. Weight Matrix
The weight matrix W plays an important role in our algo-
rithm as well as other graph-based approaches (Zhu et al.,
2003; Sarwar et al., 2001; Kalofolias et al., 2014). We em-
ploy the typical user-user or item-item graph with cosine
similarity used in existing memory-based approaches for
recommendation (Sarwar et al., 2001). However, we have
made substantial changes to make the procedure efficient
for large sparse rating matrices. Our algorithm for build-
ing the weight matrix is described in detail in Algorithm
3. Again, we consider the user-user graph without loss of
generality.

First, as usual, we can only afford to compute and store
a sparse nearest-neighbor weight matrix. To get the K
nearest neighbors for a target user u, traditional algorithms
in memory-based methods require computing the distances
between u and every other user, and selecting theK closest
ones, where most of the computation is wasted ifK << m.
In our algorithm, we first identify the nearest neighbors
approximately, without computing the actual distances or
similarities, and then compute the similarities between u
and its nearest neighbors only. We use a binary rating ma-
trix RB that records “rated or not-rated” information (line
1-2), and determine the K nearest neighbors using an kd-
tree based approximate nearest neighbor algorithm (line 3,
line 5) (Muja & Lowe, 2009). That is to say, two users who
have rated similar sets of movies are more likely to be con-
sidered to be in each other’s neighborhood, regardless of
their numeric ratings for those movies. Neither of the ways

to build the kd-tree and to find nearest neighbors based on
the tree are as precise as a naı̈ve search; however, empirical
results in the next section have shown that our approximate
strategy does not compromise the quality.

Second, we extended the VLFeat package (Vedaldi & Fulk-
erson, 2008) to enable building a kd-tree from a sparse
data matrix (in our case, RB) and querying the tree with
sparse vectors. kd-tree uses a space partitioning scheme
for efficient neighbor search (Bentley, 1975). For high-
dimensional data, we employ the greedy way that chooses
the most varying dimension for space partitioning at each
step of building the tree (Muja & Lowe, 2009), and the
procedure terminates when each leaf partition has one data
point. Thus, the complexity of building the tree is not
exponential, contrary to common understanding; and the
practical performance of kd-tree can be very efficient (Zhu
et al., 2015) and better than that of locality sensitive hash-
ing (Andoni & Indyk, 2008; O’Hara & Draper, 2013). For
example, in our case with m data points in n dimensions,
the complexity of building the tree is O(m), rather than
O(2n). In addition, when querying the tree, we put an up-
per bound D on the maximum number of distance com-
parisons, and therefore the overall complexity of finding K
nearest neighbors for all them data points isO(Dm logK)
(the logK factor comes from maintaining a heap data
structure for the K nearest neighbors).

Note that the resulting graph is not symmetric. Also the
cosine similarity for two data points with incomplete infor-
mation is defined by using the co-rated items only (Algo-
rithm 3, line 8-9) (Sarwar et al., 2001).

6. Experiments
In this section, we evaluate our proposed method LDM in
terms of both run-time and ranking quality. Since the vol-
ume of literature on recommender systems, collaborative
filtering, and matrix completion is huge, we select only a
few existing methods to compare with. All the experiments
are run on a Linux laptop with one Intel i7-5600U CPU (4
physical threads) and 8 GB memory.

6.1. Data Sets

We use three MovieLens1 data sets in our experiments:
MovieLens-100k, MovieLens-1m, and MovieLens-10m. In
each of the data sets, each user has at least 20 ratings. Fol-
lowing the convention in previous work on collaborative
ranking, we randomly select N ratings for each user as the
training set, and the other ratings were used for testing. To
keep at least 10 ratings in the testing set for each user, we
remove the users with fewer thanN+10 ratings. After this
preprocessing, we can generate several versions of these

1http://grouplens.org/datasets/movielens/

http://grouplens.org/datasets/movielens/

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A Harmonic Extension Approach for Collaborative Ranking

Algorithm 3 Building weight matrix from incomplete rat-
ing data

Input: Incomplete rating matrix R ∈ Rm×n, number of
nearest neighbors K

1: Generate binary rating matrix RB ∈ Rm×n:

(RB)j,j′ =

{
1, Rj,j′ is not missing
0, Rj,j′ is missing

2: Normalize each row of RB such that ‖(RB)j,:‖2 = 1,
∀j, 1 ≤ j ≤ m

3: Build a kd-tree on the data points (rows) in RB
4: Initialize a sparse matrix W ← 0m×m

5: for j = 1 to m do
6: NB ← The set of K approximate nearest neighbors

of (RB)j,:, found by querying the kd-tree
7: for j′ ∈ NB (j′ 6= j) do
8: Set of co-rated items C ←

{i : Rj,i is not missing, and Rj′,i is not missing}
9: Wj,j′ ← cosine(Rj,C , Rj′,C)

10: end for
11: end for
Output: Sparse weight matrix W ∈ Rm×m

Table 1. Statistics of the data sets in our experiments. N is the
number of ratings in the training set for each user. The total num-
ber of ratings in the training set is N×(# users).

Data set # users # items # ratings

MovieLens-100k N = 10 943 1,682 100,000
N = 20 744 1,682 95,269

MovieLens-1m
N = 10 6,040 3,706 1,000,209
N = 20 5,289 3,701 982,040
N = 50 3,938 3,677 924,053

MovieLens-10m

N = 10 69,878 10,677 10,000,054
N = 20 57,534 10,675 9,704,223
N = 50 38,604 10,672 8,897,688
N = 100 24,328 10,666 7,730,011

data sets with different N ’s, whose information is summa-
rized in Table 1.

6.2. Methods for Comparison

We compare our LDM method with singular value decom-
position (SVD) as a baseline, and two state-of-the-art meth-
ods that are designed specifically for collaborative ranking.
All the three methods for comparison optimize a pairwise
ranking loss function. We do not perform hyperparame-
ter selection on a separate validation set because it is time-
consuming, but we investigate the effect of the hyperpa-
rameters in Section 6.4; and in Section 6.5, we use a fixed
set of hyperparameters that can achieve a good balance be-
tween run-time and ranking quality, which are found em-

pirically across several data sets. We list these methods
below (their program options that will be used in Section
6.5 is in the footnote):

• SVD: We use the Java implementation of ranking-
based SVD in the PREA toolkit2,3. This version uses
gradient descent to optimize the ranking-based loss
function (14), as opposed to the squared loss function
in regularized SVD.

• LCR: Local collaborative ranking (Lee et al., 2014), as
implemented in the PREA toolkit4.

• AltSVM: Alternating support vector machine (Park
et al., 2015), as implemented in the collranking
package5. We employ the default configurations.

Lastly, our proposed method LDM (Algorithm 2) is im-
plemented in Matlab, and the construction and querying of
the kd-tree (Algorithm 3) is implemented in C, for which
we extended the VLFeat6 package to build a kd-tree with
a sparse input matrix efficiently. In Algorithm 2, we run
one inner iteration and one outer iteration only, since we
empirically found that the weight matrix constructed from
the incomplete input ratings by Algorithm 3 is often good
enough for the algorithm to converge in one iteration. Al-
gorithm 2 typically accounts for most (∼ 95%) of the run-
time in our method.

All the programs except SVD use 4 threads in our experi-
ments, and are applied to the same training and testing ran-
dom splits.

6.3. Evaluation Measure

We evaluate the ranking quality by normalized discounted
cumulative gain (NDCG) @K (Järvelin & Kekäläinen,
2002), averaged over all the users. Given a ranked list of
t items i1, · · · , it and their ground-truth relevance score
ri1 , · · · , rit , the DCG@K score (K ≤ t) is computed as

DCG@K(i1, · · · , it) =

K∑
j=1

2rij − 1

log2(j + 1)
. (18)

Then, we sort the list of items in the decreasing order of
the relevance score and obtain the list i∗1, · · · , i∗t , where
ri∗1 ≥ · · · ≥ ri∗t , and this sorted list achieves the max-
imum DCG@K score over all the possible permutations.

2http://prea.gatech.edu
3The command-line options for SVD is -a ranksvd

exp add 5 5 25.
4The command-line options for LCR is -a pgllorma

exp add 5 5 13.
5https://github.com/dhpark22/collranking
6http://www.vlfeat.org/

http://prea.gatech.edu
https://github.com/dhpark22/collranking
http://www.vlfeat.org/

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A Harmonic Extension Approach for Collaborative Ranking

Number of nearest neighbors

16 32 64 128 256

N
D

C
G

 @
 1

0

0.64

0.66

0.68

0.7

0.72
MovieLens-100k, #training = 10 / user

D=128

D=256

D=512

D=1024

Number of nearest neighbors

16 32 64 128 256

N
D

C
G

 @
 1

0

0.66

0.67

0.68

0.69

0.7

0.71

0.72
MovieLens-100k, #training = 20 / user

D=128

D=256

D=512

D=1024

Number of nearest neighbors

16 32 64 128 256

N
D

C
G

 @
 1

0

0.71

0.72

0.73

0.74

0.75
MovieLens-1m, #training = 20 / user

D=128

D=256

D=512

D=1024

Figure 1. Ranking quality NDCG@10 (Section 6.3) as a function of the number of nearest neighbors (k) when constructing the kd-tree
and the maximum number of comparisons (D) when querying the kd-tree. k must not be larger than D.

Time (s)

0 20 40 60 80

N
D

C
G

 @
 1

0

0.55

0.6

0.65

0.7

0.75
MovieLens-100k, #training = 10 / user

LDM

SVD

LCR

AltSVM

Time (s)

0 50 100 150 200

N
D

C
G

 @
 1

0

0.6

0.65

0.7

MovieLens-100k, #training = 20 / user

LDM

SVD

LCR

AltSVM

Time (s)

0 50 100 150 200

N
D

C
G

 @
 1

0

0.6

0.65

0.7

0.75
MovieLens-1m, #training = 20 / user

LDM

AltSVM

Figure 2. Ranking quality NDCG@10 (Section 6.3) vs. run-time under various hyperparameters for each of the methods compared.
LCR and SVD are time-consuming and therefore their results with multiple sets of hyperparameters are not available on MovieLens-1m.

The NDCG score is defined as the normalized version of
(18):

NDCG@K(i1, · · · , it) =
DCG@K(i1, · · · , it)
DCG@K(i∗1, · · · , i∗t)

. (19)

We only evaluate NDCG@10 due to limited space. Note
that for a user u, the list of items that is provided to compute
(19) is all the items with observed ratings given by u in the
test set, not only the highest-ranking ones.

In contrast to previous work on top-N recommender sys-
tems (Karypis, 2001; Deshpande & Karypis, 2004), we
discourage the use of Precision@K in the context of col-
laborative ranking for recommender systems, which mea-
sures the proportion of actually rated items out of the top
K items in the ranked list of all the items in the data
set. Contemporary recommender systems typically use nu-
meric ratings rather than binary ratings. In a 1-to-5 rating
system, for example, a 1-star item should be less favorable
than an unrated item with the expected 3-star rating. How-
ever, a recommender system that ranks 1-star items at the
top positions would get a higher Precision@K score than
one that ranks unrated items at the top positions. Thus,
Precision@K is not a valid measure for collaborative rank-
ing with a non-binary rating system.

6.4. Effect of Parameter Selection

First, we examine the influence of the kd-tree parameters
on the performance of LDM, namely the number of nearest
neighbors k and the maximum number of distance compar-
isons D. Fig. 1 shows the change in NDCG@10 when
varying k and D on several small data sets (due to time
constraints). In general, the ranking quality is much bet-
ter with moderately large k,D values than with very small
k,D values, but does not improve much when further in-
creasing k and D. Therefore, we can use sufficiently large
k,D values to get good ranking quality, but not too large to
be computationally efficient. In the experimental compar-
ison in Section 6.5, we fix the parameters to k = 64 and
D = 256.

Next, we vary the hyperparameters in each of the four
methods, and compare simultaneously the ranking quality
and run-time under different hyperparameters. Ideally, a
good performance of a collaborative ranking method means
producing higher NDCG@10 scores in less time. Fig. 2
plots NDCG@10 against the run-time for several small
data sets (due to time constraints). LDM achieves the high-
est NDCG@10 in a reasonable amount of time compared
to the other methods. AltSVM is efficient but produces un-

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

A Harmonic Extension Approach for Collaborative Ranking

Table 2. Benchmarking results of ranking quality NDCG@10 (Section 6.3) and run-time for all the compared methods. N is the number
of ratings in the training set for each user.

NDCG@10 Time (seconds)
SVD LCR AltSVM LDM SVD LCR AltSVM LDM

MovieLens-1m, N = 10 0.6836 0.7447 0.6680 0.7295 844.4 254.2 3.6 61.1
MovieLens-1m, N = 20 0.6758 0.7428 0.6879 0.7404 843.3 437.3 6.8 52.3
MovieLens-1m, N = 50 0.6178 0.7470 0.7730 0.7527 730.5 1168.8 53.0 37.0
MovieLens-10m, N = 10 0.6291 0.6866 0.6536 0.7077 24913.4 4544.4 61.2 1496.3
MovieLens-10m, N = 20 0.6201 0.6899 0.7208 0.7213 14778.5 6823.5 275.4 1653.1
MovieLens-10m, N = 50 0.5731 0.6830 0.7507 0.7286 10899.1 14668.5 648.4 1295.0
MovieLens-10m, N = 100 0.5328 0.7125 0.7719 0.7349 14648.5 4289.1 1411.2 832.0

satisfactory ranking quality, which is also sensitive to its
hyperparameters. For LCR, the ranking quality is accept-
able but it takes considerably longer time, especially when
the size of training set increases. On MovieLens-100k
(N = 20), SVD and LDM achieve similar NDCG@10
scores but LDM costs much shorter run-time.

6.5. Results

Now we fix the hyperparameters as described in Section
6.2. Table 2 reports the run-time and NDCG@10 scores
for all the compared methods on the larger data sets. LDM
does not achieve the highest NDCG@10 scores in every
case, but produces robust ranking quality with decent run-
time (except MovieLens-10m, N = 50). For LCR, the
time cost increases dramatically on larger data sets, and its
program did not finish within a few hours for MovieLens-
10m. AltSVM achieves superior ranking quality when the
number of training ratings N is large, but its performance
is sensitive to the number of iterations, which in turn de-
pends on the data set and the given tolerance parameter.
We conclude that LDM is an overall competitive method
that is efficient and robust to hyperparameters and the un-
derlying data sets. Also, LDM has particular advantages
when the available information is relatively few, i.e. when
N is small, which we consider is a more difficult problem
than the cases with richer training information.

We can clearly see that the run-time of LDM increases with
the number of users (due to the reliance on the user-user
similarity matrix, as expected), while the run-time of LCR
and AltSVM increases with the number of ratings in the
training set. Further optimizing the code for LDM is an
important direction in our future work to make it efficient
for large-scale data sets.

We note that our method predicts all the missing ratings in
the label propagation process, which is included in the tim-
ing of LDM, and therefore our methods takes a negligible
amount of time for testing, especially in the real scenario
where a recommendation algorithm would have to predict
the ratings for all the items and return the top-rated ones to
the user.

7. Related Work
Both user-based and item-based collaborative filtering
(Breese et al., 1998; Sarwar et al., 2001) can be consid-
ered as graph-based label propagation methods. The idea
of discrete harmonic extension for semi-supervised learn-
ing in general was originally proposed in (Zhu et al., 2003).
Graph-based methods were recently considered for matrix
completion (Kalofolias et al., 2014) and top-N recommen-
dation (Zhang et al., 2009) as well. Given all the existing
work, what we have presented is a continuous harmonic
extension formulation for label propagation and a rigorous
manifold learning algorithm for collaborative ranking.

8. Conclusion and Discussion
In this paper, we have proposed a novel perspective on
graph-based methods for matrix completion and collabora-
tive ranking. For each item, we view the user-user graph as
a partially labeled data set (or vice versa), and our method
propagates the known labels to the unlabeled graph nodes
through the graph edges. The continuous harmonic exten-
sion problem associated with the above semi-supervised
learning problem is defined on a user or item manifold
solved by a point integral method. Our formulation can be
seen as minimizing the dimension of the user or item man-
ifold, and thus builds a smooth model for the users or items
but with higher complexity than low-rank matrix approxi-
mation. Also, our method can be fully parallelized on dis-
tributed machines, since the linear systems that need to be
solved for all the items are independent with one another.
Experimental results have shown that our method has par-
ticular strength when the number of available ratings in the
training set is small, which makes it promising when com-
bined with other state-of-the-art methods like AltSVM and
helpful for resolving the cold-start issue. Our formulation
for harmonic extension in the context of matrix completion
can be extended to include other constraints or regulariza-
tion terms and side information as well. An important di-
rection is to further improve the efficiency of the algorithm
and compare it with recent large-scale matrix completion
methods (Yun et al., 2014; Zhuang et al., 2013).

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

A Harmonic Extension Approach for Collaborative Ranking

References
Andoni, Alexandr and Indyk, Piotr. Near-optimal hashing

algorithms for approximate nearest neighbor in high di-
mensions. Commun. ACM, 51(1):117–122, 2008.

Bentley, Jon Louis. Multidimensional binary search trees
used for associative searching. Commun. ACM, 18(9):
509–517, 1975.

Billsus, Daniel and Pazzani, Michael J. Learning collabo-
rative information filters. In ICML ’98: Proc. of the 15th
Int. Conf. on Machine learning, pp. 46–54, 1998.

Breese, John S., Heckerman, David, and Kadie, Carl. Em-
pirical analysis of predictive algorithms for collaborative
filtering. In UAI ’98: Proc. of the 14th Conf. on Uncer-
tainty in Artificial Intelligence, pp. 43–52, 1998.

Deshpande, Mukund and Karypis, George. Item-based top-
n recommendation algorithms. ACM Trans. Inf. Syst., 22
(1):143–177, 2004.

Järvelin, Kalervo and Kekäläinen, Jaana. Cumulated gain-
based evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

Kalofolias, Vassilis, Bresson, Xavier, Bronstein, Michael,
and Vandergheynst, Pierre. Matrix completion on
graphs. In NIPS Workshop on “Out of the Box: Robust-
ness in High Dimension”, 2014.

Karypis, George. Evaluation of item-based top-n recom-
mendation algorithms. In CIKM ’01: Proc. of the 10th
Int. Conf. on Information and Knowledge Management,
pp. 247–254, 2001.

Lee, Joonseok, Sun, Mingxuan, and Lebanon, Guy. A
comparative study of collaborative filtering algorithms.
http://arxiv.org/abs/1205.3193, 2012.

Lee, Joonseok, Bengio, Samy, Kim, Seungyeon, Lebanon,
Guy, and Singer, Yoram. Local collaborative ranking. In
WWW ’14: Proc. of the 23rd Int. Conf. on World Wide
Web, pp. 85–96, 2014.

Muja, Marius and Lowe, David G. Fast approximate near-
est neighbors with automatic algorithm configuration. In
VISAPP: Proc. of the Int. Conf. on Computer Vision The-
ory and Applications, pp. 331–340, 2009.

Ning, Xia and Karypis, George. Recent advances in recom-
mender systems and future directions. In Pattern Recog-
nition and Machine Intelligence, volume 9124 of Lecture
Notes in Computer Science, pp. 3–9. Springer, 2015.

O’Hara, Stephen and Draper, Bruce A. Are you using
the right approximate nearest neighbor algorithm? In
WACV ’13: Workshop on Applications of Computer Vi-
sion, 2013.

Osher, Stanley, Shi, Zuoqiang, and Zhu, Wei. Low dimen-
sional manifold model for image processing. Technical
Report CAM report 16-04, UCLA, 2016.

Park, Dohyung, Neeman, Joe, Zhang, Jin, Sanghavi, Su-
jay, and Dhillon, Inderjit. Preference completion: Large-
scale collaborative ranking from pairwise comparisons.
In ICML ’15: Proc. of the 32th Int. Conf. on Machine
learning, pp. 1907–1916, 2015.

Sarwar, Badrul, Karypis, George, Konstan, Joseph, and
Riedl, John. Item-based collaborative filtering recom-
mendation algorithms. In WWW ’01: Proc. of the 10th
Int. Conf. on World Wide Web, pp. 285–295, 2001.

Shi, Zuoqiang and Sun, Jian. Convergence of the point inte-
gral method for the poisson equation on manifolds I: the
Neumann boundary. http://arxiv.org/abs/1509.06458,
2014.

Shi, Zuoqiang, Sun, Jian, and Tian, Minghao. Harmonic
extension. http://arxiv.org/abs/1509.06458, 2015.

Vedaldi, A. and Fulkerson, B. VLFeat: An open and
portable library of computer vision algorithms, 2008.
http://www.vlfeat.org/.

Yun, Hyokun, Yu, Hsiang-Fu, Hsieh, Cho-Jui, Vish-
wanathan, S. V. N., and Dhillon, Inderjit. Nomad: Non-
locking, stochastic multi-machine algorithm for asyn-
chronous and decentralized matrix completion. Proc.
VLDB Endow., 7(11):975–986, 2014.

Zhang, Yin, Wu, Jiang-qin, and Zhuang, Yue-ting. Random
walk models for top-n recommendation task. Journal of
Zhejiang University SCIENCE A, 10(7):927–936, 2009.

Zhu, Wei, Chayes, Victoria, Tiard, Alexandre, Sanchez,
Stephanie, Dahlberg, Devin, Kuang, Da, Bertozzi, An-
drea, Osher, Stanley, and Zosso, Dominique. Nonlo-
cal total variation with primal dual algorithm and stable
simplex clustering in unspervised hyperspectral imagery
analysis. Technical Report CAM report 15-44, UCLA,
2015.

Zhu, Xiaojin, Ghahramani, Zoubin, and Lafferty, John.
Semi-supervised learning using gaussian fields and har-
monic functions. In ICML ’03: Proc. of the 20th Int.
Conf. on Machine learning, pp. 912–919, 2003.

Zhuang, Yong, Chin, Wei-Sheng, Juan, Yu-Chin, and Lin,
Chih-Jen. A fast parallel sgd for matrix factorization in
shared memory systems. In RecSys ’13: Proc. of the
7th ACM Conf. on Recommender Systems, pp. 249–256,
2013.

http://www.vlfeat.org/

