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Gauss Surface Reconstruction

(a) PR (|v| = 1.4)
(t1 = 105.82)

(b) SSD (|v| = 1.2)
(t1 = 37.34)

(c) SPR (|v| = 1.6)
(t1 = 77.20; t10 = 15.78)

(d) GR (|v| = 1.4)
(t1 = 79.46; t10 = 8.87)

Figure 1: Reconstructions of the Lady model by Poisson Reconstruction (PR) [Kazhdan et al. 2006], Smoothed Signed Distance Reconstruction
(SSD) [Calakli and Taubin 2011], Screened Poisson Reconstruction (SPR) [Kazhdan and Hoppe 2013], and our Gauss Reconstruction (GR). The
Lady model is a real-world scanned data with 0.5 millions samples. |v| denotes the number of vertices in millions of the reconstructed mesh, and
t1 and t10 denote the running time in seconds of the reconstructions with single thread and 10 threads, respectively.

Abstract1

In this paper, we present a surface reconstruction method. We fol-2

low the strategy of Poisson reconstruction to estimate the indicator3

function and then obtain a triangle mesh by extracting an isosur-4

face. The key observation of this work is that the indicator function5

can be estimated directly from Gauss Lemma without solving any6

Poisson system. This direct approach leads to a simple and more ac-7

curate reconstruction method which we call Gauss reconstruction.8

More importantly, our Gauss reconstruction can be paralleled with9

little overhead and therefore very efficient. We apply our recon-10

struction to both synthetic data and real-world scanned data, and11

demonstrate the accuracy, the robustness and the efficiency of our12

method. In addition, we compare its performance with that of sev-13

eral state-of-art methods.14
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1 Introduction19

Surface Reconstruction has been studied for more than three20

decades. Many elegant methods are available. Among them, Pois-21

son reconstruction [Kazhdan et al. 2006] or its variant [Kazhdan22

and Hoppe 2013] is one of the most popular methods. The basic23

idea of Poisson reconstruction is to estimate the indicator function24

χ of a region in R3 and then extract a triangle mesh by isosurfacing25

χ to approximate the boundary of this region. In Poisson recon-26

struction, one needs to solve a Poisson equation in order to estimate27

χ. We observe that the indicator function χ can be estimated using28

an explicit integral formula based on the fundamental solution to29

Laplace equation, which in fact is given in the well-known Gauss30

Lemma in the potential theory (e.g.,[Wendland 2009]).31

However, it is a non-trivial task to turn Gauss Lemma to an effi-32

cient and accurate reconstruction method. The singularity of the33

integral kernel and the discontinuity of the indicator function af-34

fects the accuracy of the reconstruction, and the globalness of the35

integral formula makes the algorithm quite slow. We propose an36

approach called disk integration to address the singularity issue, a37

smoothing scheme to solve the discontinuity issue. To improve the38

efficiency, we use the well-known fast multipole method [Green-39

gard and Rokhlin 1987] to estimate the indicator function.40

Our Gauss reconstruction algorithm inherits many nice properties41

of Poisson reconstruction, including its robustness against noise42

and missing data, and its being free of spurious surface sheets away43

from the input samples. Furthermore, our direct approach of es-44

timating the indicator function without solving any linear system45

makes the reconstruction algorithm simple and accurate. More im-46

portantly, our Gauss reconstruction has a natural parallel implemen-47

tation and the overhead of this implementation is almost negligible.48

Figure 1 shows the comparison of our Gauss reconstruction with49

several state-of-art methods on the Lady model. All reconstructions50

are computed using an octree of the maximum depth 10. From Fig-51

ure 1, we can see that our Gauss reconstruction generates a good52

quality reconstruction of the Lady model: it preserves the details53

while avoid overfitting the input samples. In addition, the parallel54

implementation of our Gauss reconstruction only has little over-55

head.56

2 Related Work57

Surface reconstruction from point cloud has attracted great atten-58

tion in the past thirty years, both in theory and in practice. Many59

algoirthms have been proposed. We give a brief review to those60

relavant to our work. There are two main categories: combinatorial61

algorithms and implicit algorithms.62

Combinatorial methods take (part of) input sample points as63

vertices and reconstruct output meshes by determining the connec-64

tivity of input samples. Many of them are based on Voronoi diagram65
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or its dual Delaunay triangulation, including Crust [Amenta et al.66

1998], Power Crust [Amenta et al. 2001], Cocone [Amenta et al.67

2002], Robust Cocone [Dey and Goswami 2004], Wrap [Edels-68

brunner 2003] and flow complex [Giesen and John 2008]. These69

methods have good theoretical results, however in practice are sen-70

stive to noise and may produce jagged surfaces. In [Kolluri et al.71

2004], a spectral based approach is proposed to smooth the surface.72

More recently, in [Xiong et al. 2014], a learning approach is pro-73

posed to treat geometry and connectivity reconstruction as one joint74

optimization to improve reconstruction quality.75

Implicit methods attempt to estimate implicit functions from in-76

put samples, and extract iso-surfaces to generate triangle meshes.77

Poisson reconstruction and its variant [Kazhdan et al. 2006; Kazh-78

dan and Hoppe 2013] are most revalant to our work, which esitmate79

indicator functions of unknown models. In [Muraki 1991; Walder80

et al. 2005], Radial Basis Functions (RBFs) are used as bases for81

defining implicit functions, where coefficients of bases are deter-82

mined by fitting input data. Since RBFs are global, fast multipole83

methods (FMM) are employed to improve the efficiency [Carr et al.84

2001]. The signed distance function is a natural choice as implicit85

function for surface reconstruction, where implicit function can be86

estimated either locally as distances to tangent planes of nearby87

samples [Hoppe et al. 1992; Curless and Levoy 1996] or globally88

by minimizing the fitting error [Calakli and Taubin 2011]. Finally,89

in [Amenta and Kil 2004; Dey and Sun 2005; Levin 1998], moving90

least squares (MLS) is used to define implicit surfaces, which are91

extremal sets of certain energy. It is associated with a nice projec-92

tion operator which can be used for surface smoothing. The sur-93

faces reconstructed by implicit methods often do not interpolate in-94

put samples, and therefore are smoother than those reconstructed95

by combinatorial methods.96

For iso-surface extraction, marching cubes [Lorensen and Cline97

1987] and its adaptation to octree [Wilhelms and Van Gelder 1992]98

are the most popular methods. Delaunay refinement based meth-99

ods [Boissonnat and Oudot 2005] produce good quality triangle100

meshes, though they are less efficient and difficult to parallelize.101

3 Gauss Reconstruction102

Our problem can be stated as follows: the input data S is a set of ori-103

ented points S = {s1, s2, ..., sn}, each consisting of a position s.p104

and an outward normal s. ~N , sampling the boundary ∂Σ of an un-105

known region Σ ∈ R3, i.e., s.p lies on or near the surface and s. ~N106

approximates the surface normal near the position s.p. Our goal is107

to reconstruct a triangle mesh approximating the boundary ∂Σ. As-108

sume the region Σ satisfies certain regularity which often holds for109

3D models in computer graphics. We follow Kazdhan et al. [Kazh-110

dan et al. 2006] to estimate the indicator function χ of the region111

Σ and extract an appropriate isosurface. However, unlike [Kazhdan112

et al. 2006] where the indicator function is computed by solving a113

Poisson equation, our method estimates the indicator function using114

the following explicit integral formula, which is given in the well-115

known Gauss Lemma in the potential theory [Wendland 2009].116

Lemma 3.1 (Gauss Lemma). Let Σ be an open region in R3. Con-117

sider the following double layer potential: for any x ∈ R3
118

χ(x) =

∫
∂Σ

∂G

∂ny
(x, y)dτ(y), (1)

where ny is the outward normal of ∂Σ at y, dτ(y) is the surface119

area form of ∂Σ at y, and G is the fundamental solution of the120

Laplace equation in R3, which can be written explicitly as:121

G(x, y) = − 1

4π‖x− y‖ . (2)

Then, χ(x) is the indicator function of Σ, i.e.122

χ(x) =


0 x ∈ R3 \ Σ̄

1/2 x ∈ ∂Σ̄

1 x ∈ Σ

(3)

Note that123

∂G

∂ny
(x, y) = − 1

4π

(x− y) · ny
‖x− y‖3 ,

which we call the kernel function, denotedK(x, y). Given the sam-124

ples S, the indicator function conceptually can be estimated directly125

by the following summation126

χ(x) ≈ − 1

4π

∑
s∈S

(x− s.p) · s. ~N
‖x− s.p‖3 s.A. (4)

where s.A is the surface area of the sample s, whose estimation will127

be described in Section 3.1. Our approach is direct and very sim-128

ple. Note that the estimation of the indicator function χ at different129

points x is completely independent to each other, which leads to a130

natural parallel algorithm.131

The integral formula (1) has many good properties. Nevertheless,132

to make our reconstruction practically useful and efficient, we need133

to address the following three issues.134

(i) Singularity of the kernel function: Notice that the kernel function135

K(x, y) becomes singular when x is approaching y. Based on the136

summation formula (4), to accurately evaluate the indicator func-137

tion χ at the points close to the surface ∂Σ, one needs a very dense138

sampling of the surface, which becomes practically not plausible.139

To address this issue, we propose an approach called disk integra-140

tion, where we associate each sample point s a disk to approximate141

the surface locally around the position s.p, and use the integral over142

the continuous disk domain, instead of over the discrete samples, to143

approximate the integral over the surface. See Section 3.1 for a de-144

tailed description. With disk integration, we are able to accurately145

estimate the indicator function χ even with a sparse sampling. For146

example, as shown in Figure 2, the indicator function of unit sphere147

can be accurately estimated from 1000 samples using disk integra-148

tion so that the reconstructed surface is within 5× 10−3 Hausdorff149

distance to unit sphere.150

(ii) Globalness of the integral formula: Note the estimation of χ(x)151

using the integral formula (1) is global, i.e., one has to integrate the152

kernel function K(x, y) over the entire surface ∂Σ to obtain a cor-153

rect estimation of χ(x). In particular, one can not perform thresh-154

olding based on the value ofK(x, y) and skip integrating the region155

where K(x, y) is small. To see this, imagine Σ is a ball of radius r,156

and x is the center of the ball. For y ∈ ∂Σ, K(x, y) can be made157

arbitrarily small by choosing the radius r large enough. However,158

χ(x) remains the constant 1, independent of r. Therefore, to esti-159

mate χ atm different locations, a native implementation requires at160

least O(mn) operations. Recall that n is the number of samples in161

S. Fortunately, the kernel functionK(x, y) over two distant regions162

can be well-approximated by a constant function. This enables us163

to speed up the estimation of χ by using the well-known fast multi-164

pole method (FMM). In the paper, we employ a simple FMM based165

on octree, see Section 3.2. This improves to O(m + n logn) the166

complexity for estimating χ at m points. Note there exists FMM167
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Figure 2: Left column: The reconstruction from the indicator func-
tion. The top shows the resulting mesh and the bottom shows the
indicator function around the north pole restricted to the diameter
passing the north pole. Right column: The reconstruction from the
smoothed indicator function. The top shows the resulting mesh and
the bottom shows the smoothed indicator function around the north
pole restricted to the diameter passing the north pole.

which can improve the complexity to the linear order O(n + m),168

which though is more involved and we will investigate in the future.169

(iii) Discontinuity of the indicator function: Once the above two is-170

sues are addressed, the indicator function χ can be evaluated faith-171

fully and efficiently. The resultant triangle mesh by isosurfacing χ,172

denoted M , lies in a small tubular neighborhood of the surface ∂Σ,173

namely the Hausdorff distance between M and ∂Σ is small. How-174

ever, since the function χ is discontinuous at ∂Σ, the normal of a175

triangle in M may not approximate the normals of ∂Σ at the points176

close to the triangle, see Figure 2. To address this issue, we smooth177

the indicator function near the surface ∂Σ by properly modifying178

the kernel function. See Section 3.3 for more details. Figure 2179

shows the triangle mesh obtained by isosurfacing the smoothed in-180

dicator function of unit sphere, which becomes smooth.181

3.1 Disk Integration182

Recall that the input data S samples the surface ∂Σ. Imagine that183

each sample point s ∈ S represents a neighboring region on ∂Σ,184

denoted s.V , so that the set {s.V }s∈S decomposes the surface ∂Σ.185

One can think of s.V as the Voronoi region of s on ∂Σ. Then186

χ(x) =
∑
s∈S C(x, s) where187

C(x, s) =

∫
s.V

K(x, y)dτ(y). (5)

Note that s.V is unknown and we use a disk perpendicular to s. ~N to188

approximate s.V . The radius of this disk is estimated as the average189

distance to the k-nearest samples in S. In this paper, we fix k = 10190

for all samples. We denote this disk s.D, its radius s.r, and take191

the area of s.D as the surface area s.A.192

We approximate C(x, s) using
∫
s.D

K(x, y)dy. Note that even193

over the simple domain s.D, the above integration can not be cal-194

culated explicitly. Our strategy is to approximate s.D using k layers195

of partial annuli (See the shaded regions in Figure 3), over each of196

which the integration of the kernel function K(x, y) can be cal-197

culated analytically. Let x′ be the projection of x on the plane198

x′
θi

ri
ri−1

x′
θi

ri
ri−1

Figure 3: Illustration of integral domain (shaded region) of disk
integration.

containing s.D. Denote C(r) the circle centered at x′ of the ra-199

dius r, and A(r,R) the annulus centered at x′ of the inner ra-200

dius r and the outer radius R. Let r0 = miny∈s.D ‖x′ − y‖ and201

rk = maxy∈s.D ‖x′ − y‖, and ri = r0 + i(rk−r0)
k

, for 0 ≤ i ≤ k.202

r0 is 0 if x′ is in the disk. Let θi be the central angle of the arc203

C(ri) ∩ s.D, and Fi be the fan spanned by the same arc. The par-204

tial annulus at the ith layer is Fi ∩A(ri−1, ri). Set d = ‖x− x′‖.205

Then C(x, s) is approximated by DI(x, s) =
∑

1≤i≤k ci where206

ci =

∫
Fi∩A(ri−1,ri)

K(x, y)dy

= − 1

4π

∫ θi

0

∫ ri

ri−1

d

(d2 + r2)3/2
rdrdθ

=
θid

4π

 1√
d2 + r2

i−1

− 1√
d2 + r2

i


In the paper, we fix the number of layers k = 20.207

Furthermore, notice that if the point x is far away from the sam-208

ple s so that the integral function K(x, y) over s.D becomes well-209

approximated by the constant K(x, s), then C(x, s) can simply be210

evaluated by DC(x, s) = K(x, s)s.A. Set R(x, s) = ‖x−s‖+s.r
‖x−s‖−s.r .211

One can verify that the larger R(x, s) is, the closer the function212

K(x, y) over s.D is to the constant K(x, s). In the paper, when213

R(x, s) > 2, we approximate C(x, s) using DC(x, s).214

Figure 2 shows the indicator function of unit sphere restricted to215

points passing the center estimated using the above approach from216

1000 random samples. The Hausdorff distance between the recon-217

structed triangle mesh and the original sphere is less than 5×10−3.218

3.2 Fast Multipole Method219

In this subsection, we describe an implementation of FMM for220

speeding up the estimation of the indicator function χ. An octree221

is employed as the multi-resolution data structure in FMM and the222

same octree is also used for isosurfacing χ.223

Given a set of samples S and a maximum tree depth D, the octree224

is the minimal octree so that each sample falls into a leaf node of225

depth D. For a non-uniform sampling, we follow [Kazhdan et al.226

2006] and reduce the depth for the samples in the sparse regions.227

We denote O the resultant octree, and V set of grid vertices of the228

octree O. Our goal is to evaluate the indicator function at V . Now229

consider the cubes {Bki }i of O at depth k, see Figure 4. A cube230

Bki may be half open, i.e., does not contains the faces with the231

maximum x, or y, or z coordinate, unless they are on the boundary.232
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Bk+1
i′

Bk
i

Bl
j

Figure 4: The cubes O at depth k may not cover the entire domain
due to the adaptivity of O. The red cube Bk+1

i′ is a subcube of the
pink cube Bki . The blue dots in Bki form set of grid vertices Vki in
Bki .

See the pink cube in Figure 4. Let Vki = V ∩Bki (See the blue dots233

in Bki in Figure 4), and Ski = S ∩Bki . For a set X , denote |X| the234

cardinality of X . Let v̄ki be the representative grid of Bki defined235

by236

v̄ki =

∑
v∈Vk

i

|Vki |
,

and s̄ki be the representative sample of Bki defined by237

s̄ki .p =

∑
s∈Sk

i
s.A · s.p∑

s∈Sk
i
s.A

,

s̄ki . ~N =

∑
s∈Sk

i
s.A · s. ~N∑

s∈Sk
i
s.A

, and

s̄ki .A =
∑
s∈Sk

i

s.A.

The disk s̄ki .D is centered at s̄ki , perpendicular to s̄ki . ~N , and of the238

area s̄ki .A. Let ak be the side length of the cubes at depth k. The239

basic idea of our implementation of FMM is as follows. We start240

with the cube at depth 1. In general, consider two cubesBki andBlj241

at depth l and depth k respectively. Note thatBki andBlj may be the242

same cube. If ‖s̄ki − v̄lj‖ ≥ cak, then for any grid vertex v ∈ V lj ,243

we approximate
∑
s∈Sk

i
C(v, s) using C(v̄lj , s̄

k
i ). Otherwise, we244

repeat the above procedure for any pairs of subcubes, one inBki and245

the other in Blj until both are leaf nodes. Only when both are leaf246

nodes do we indeed estimate C(v, s) for an individual sample s ∈247

Ski and an individual grid vertex v ∈ V lj . In the paper, we fix the248

constant c =
√

2. Pseudocode 1 shows our FMM implementation.249

3.3 Smooth the Indicator Function250

In this subsection, we describe a way to smooth the indicator func-251

tion to obtain a smooth reconstruction. Our strategy is to modify252

the kernel function. For a point x ∈ R3, we associate a width x.w253

and modify the kernel functionK(x, y) for any y ∈ ∂Σ as follows.254

255

K̃(x, y) =


K(x, y), ‖x− y‖ ≥ x.w,

− (x− y) · ny
4π(x.w)3

, ‖x− y‖ < x.w.
(6)

The smoothed indicator function χ̃(x) =
∫
∂Σ
K̃(x, y)dτ(y). Note256

that K̃(x, y) remains the same as K(x, y) for any y ∈ ∂Σ with257

1: function FMM(Bki , Blj , f : V → R)
2: if ‖s̄ki − v̄lj‖ ≥ cak then
3: evaluate e ≈ C(v̄lj , s̄

k
i )

4: f(v) = f(v) + e for any v ∈ V lj .
5: else
6: if both Bki and Blj are leaves then
7: for all s ∈ Ski and v ∈ V lj do
8: evaluate e ≈ C(v, s)
9: f(v) = f(v) + e;

10: end for
11: else if Neither Bki nor Blj is a leaf then
12: for all Bk+1

i′ ⊂ Bki and Bl+1
j′ ⊂ B

l
j do

13: FMM(Bk+1
i′ , Bl+1

j′ , f)
14: end for
15: else if Bki is a leaf and Blj is not a leaf then
16: for all Bl+1

j′ ⊂ B
l
j do

17: FMM(Bki , Bl+1
j′ , f)

18: end for
19: else
20: for all Bk+1

i′ ⊂ Bki do
21: FMM(Bk+1

i′ , Blj , f)
22: end for
23: end if
24: end if
25: end function

Pseudocode 1: FMM.

‖x−y‖ ≥ x.w, and hence χ̃(x) = χ(x) for any xwith d(x, ∂Σ) ≥258

x.w.259

To see χ̃(x) at a point x with d(x, ∂Σ) < x.w, we consider a260

simplified case where the surface ∂Σ is simply a plane. Let d(x) be261

the signed distance from x to ∂Σ. In this simplified case, we have262

d(x) = (x− y) · ny , for any y ∈ ∂Σ. Let Bx(r) be the ball in R3
263

centered at x and of radius r. Then we have264

χ̃(x) =

∫
Bx(x.w)∩∂Σ

K̃(x, y)dτ(y) +

∫
∂Σ\Bx(x.w)

K(x, y)dτ(y)

= − d(x)

4(x.w)3
((x.w)2 − d2)− d(x)

2(x.w)

= − 3d(x)

4(x.w)3
+

d3(x)

(x.w)3
.

Therefore, when d(x) is small, i.e., the point x is close to the sur-265

face, χ̃(x) is dominated by a linear function of the signed distance266

d(x), which is very desirable for extracting isosurface [Calakli and267

Taubin 2011].268

It remains to specify the width x.w. Note that we only need to spec-269

ify the width for the grid vertices V . For a grid vertex v ∈ V , let270

v.B be set of the leaf nodes in O having v as one of their vertices.271

Set v.w to be β times the side length of the smallest cube in v.B,272

where β is a constant which we call width coefficient. Define the273

neighboring vertices v.V of v in the octree so that a grid vertex u is274

in v.V if u and v are connected by an edge of a cube in v.B. It is275

possible that v.w and u.w differ a lot even when u and v are neigh-276

bors, and the resultant function χ̃ may become rough. To address277

this issue, we further smooth v.w by averaging the widths over the278

neighbors, namely set279

4
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Figure 5: Choice of width coefficient. The first row shows vi-
sual effects; the second row shows the average position error
(Dist) and the average angle error using the reconstruction bench-
mark [Berger et al. 2013].

v.w =

∑
u∈v.V u.w

|v.V| ,

and repeat this averaging step for k times. In the paper, we set280

k = 20.281

Note that although the smoothed kernel function K̃ is not singular,282

disk integration can still be employed for K̃ and significantly im-283

proves the accuracy of estimating χ̃. Moreover, when we invoke the284

estimation of C(v̄, s̄) for a representative grid vertex v̄ and a rep-285

resentative sample s̄, we assume that v̄ and s̄ are far away to each286

other and compute DI(v̄, s̄) or DC(v̄, s̄) using the kernel function287

K. Therefore, there is no need to associate a width to a representa-288

tive grid vertex v̄.289

The width coefficient provides a way to control the trade-off be-290

tween the position accuracy and the smoothness of the reconstruc-291

tion. See Figure 5. The bigger the β is, the smoother but less accu-292

rate in position of the reconstructed surface. Of course, if β is cho-293

sen too big, both position accuracy and angle accuracy decreases.294

A typical value of β is set to be 1.295

Finally, we summarize our Gauss reconstruction in Pseudocode 2.296

3.4 Parallel Implementation297

For the grid vertices v, the estimation of the indicator function χ(v)298

is independent to each other, which leads a straightforward paral-299

lel implementation. In particular, we open new threads to execute300

the calls of FMM(Bki , B
l
j , f) with k, l ≤ c. The parameter c is301

chosen so that we have just enough threads so that the load on each302

1: function GAUSSRECON(S: samples, D: maximum depth,
β: width coefficient)

2: Estimate s.r for each sample s ∈ S
3: Given D, construct an adaptive octree O
4: Compute representative samples s̄ for all cubes in O.
5: Compute representative grid vertices v̄ for all cubes in O.
6: Given β, estimate v.w for each grid vertex v ∈ V
7: Initialize f : V → R to be zero.
8: Call FMM(B1

1 , B
1
1 , f ).

9: Set the isovalue as the median of f .
10: Extract the isosurface M using marching cube over O.
11: Output M .
12: end function

Pseudocode 2: GaussRecon

0
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Figure 6: The average error RMS of the reconstructions by dif-
ferent methods. The sub-figure on top-right is the zoom-in on the
marked box.

core is balanced and at the same time the overhead of multi-threads303

is minimized. In the paper, we set c = 5.304

4 Results305

In this section, we evaluate our Gauss reconstruction (GR) in terms306

of accuracy, robustness, and efficiency, and compare its perfor-307

mance to that of the state-of-art methods, including Poisson recon-308

struction [Kazhdan et al. 2006] (PR) and its variant screened Pois-309

son reconstruction [Kazhdan and Hoppe 2013] (SPR), and smooth310

signed distance reconstruction [Calakli and Taubin 2011] (SSD).311

Note that we compare with the most recent implementation of these312

methods available online. In particular, using the most recent im-313

plemenation, the performance of SSD improves a lot comparing to314

those reported in [Kazhdan and Hoppe 2013]. We follow [Kazhdan315

and Hoppe 2013], and set the weights for the different terms of the316

energy functional in SSD as 1 for value, 1 for gradient, 0.25 for317

Hessian, and set the data fitting weight α = 4 in SPR. Unless we318

state explicitly using other values, we by default set the maximum319

depth D = 10 for octree construction in all methods and the width320

coefficient β = 1 in our Gauss reconstruction. All the experiments321

are performed on a Windows 7 workstation with an Intel Xeon E5-322

2690V3 CPU @2.6GHz.323

4.1 Accuracy324

First, we consider the reconstruction of unit sphere from samples325

where the accurate ground truth is known. We generate 1000 to326

8000 samples according to a Gaussian mixture of eight Gaussian in327

R3 and then radially project them into unit sphere. We use the aver-328

age error RMS to measure the quality of the reconstructed surface.329
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PR SSD

SPR GR

Figure 7: The reconstructed unit sphere from 1000 random sam-
ples. The color illustrates the RMS (relative to the bounding box
diaganol) error distribution: small error in blue and big error in
red.

Figure 6 shows the error statistics of the reconstructions by different330

methods. Our Gauss reconstruction performs the best and Poisson331

reconstruction has the largest error. For 1000 samples, we color the332

RMS error (relative to the bounding box diagonal) for each vertex333

to visualize the error distribution. See Figure 7. In this case, the334

sphere obtained by Poisson reconstruction is visually not round.335

Next, we consider general models. To estimate the numerical accu-336

racy of the reconstruction results, we follow the same strategy as in337

[Berger et al. 2013], we first sample points from a known mesh, or338

simply take its vertices, and then reconstruct surfaces with this point339

set. Next, we use the Metro tool [Cignoni et al. 1998] to compute340

the Hausdorff distance (measuring the worse error) and the mean341

distance (measuring the average error) between the reconstructed342

mesh and the known mesh. Figure 8 shows the result. In general,343

SPR and GR have a comparable performance on this set of models.344

and both outperform PR and SSD.345

We also apply the reconstruction methods to the data from the re-346

construction benchmark [Berger et al. 2013]. Due to the limited347

space, we only report the results on four data sets: Anchor, Danc-348

ing Children, Gargoyle and Quasimodo. Following [Kazhdan and349

Hoppe 2013], we set the maximum depth D = 9 in this experi-350

ment. The error shown in Figure 9 is relative to that of PR. From351

Figure 9a, we can see that PR and GR generate visually similar re-352

sults while SPR and SSD produces extra spurious sheets near the353

surface. However, the accuracy of GR is much better than PR. Fig-354

ure 9b and 9c show the average angle error and the average position355

error, respectively. For this set of examples, overall, PR performs356

the best in angle accuracy but the worst in position accuracy, and357

SSD performs the best in position accuracy. However, from Fig-358

ure 9a, SSD may overfit the data. Our GR seems achieving a better359

balance between position accuracy and angle accuracy.360

4.2 Noise Resilience361

In this subsection, we test our Gauss reconstruction over the noisy362

data including both synthetic Gaussian noise and real-world scan363

data with noise and possibly missing data, and compare the perfor-364

mance of different reconstructions.365

Synthetic Noise In this example, we add to the Armadillo model366

the different levels of noise by perturbing the positions of the sam-367

ples according to Gaussian distribution of different variances.368

Figure 10b shows the reconstructed surfaces by our Gauss recon-369

struction from the samples perturbed by a Gaussian with variance370

equal to 0.005 times the diagonal of the bounding box. Figure 10c371

show the details of reconstructions at different noisy levels by372

zooming in on the region marked in Figure 10b. SPR and SSD373

apparently overfit the data and therefore sensitive to noise and re-374

construct bumpy surfaces. PR always produces smooth reconstruc-375

tions, whose accuracy however is the lowest. See Figure 10a. The376

surfaces reconstructed by our Gauss reconstruction are also smooth,377

and at the same time preserve more details, and therefore more ac-378

curate.379

Real-world Scanned Data We apply the reconstruction methods380

to the sampling obtained by scanning several real-world models us-381

ing Konica-Minolta Vivid 9i Laser Scanner. The obtained sampling382

contains noise and missing data, and are highly non-uniform. See383

the first column in Figure 11. In these examples, we set the width384

coefficient β = 2 in our Gauss reconstruction. Visually, the recon-385

structions generated by PR and GR are comparable, and have better386

quality than those by SSD and SPR, which again obviously overfit387

the data.388

4.3 Efficiency389

In this subsection, we show the efficiency of our Gauss reconstruc-390

tion, in particular its parallel implementation. The running time391

shown in Table 1 excludes the time for data input/output.392

As Table 1 shows, Poisson reconstruction (version 3.0) is the slow-393

est method among four reconstructions. In the single thread imple-394

mentation, SSD (version 3.0) is the fastest mainly due to the em-395

ployment of hash octree, and our Gauss reconstruction is compara-396

ble to that of screened Poisson reconstruction (version 8.0). Note397

that the current implementation of PR, SPR and GR does not use398

hash octree.399

For the multi-threads implementation, we can see from Table 1,400

the parallel implementation of our Gauss reconstruction has almost401

negligible overhead and achieves a nearly perfect linear speedup.402

In Table 1, we also show the running time of the parallel imple-403

mentation of screened Poisson reconstruction, which is available to404

the public. GR is about twice as fast as SPR.405

Model Cores
Time in Seconds

PR SSD SPR GR

Grog 1 178.68 59.44 133.68 127.23

|v| = 0.8 10 – – 27.48 14.96

Bimba 1 62.19 35.04 73.15 42.31

|v| = 0.5 10 – – 15.46 5.59

Pig 1 169.64 58.16 116.69 122.62

|v| = 0.9 10 – – 20.93 13.90

Child 1 135.51 50.44 105.24 95.64

|v| = 0.7 10 – – 18.67 9.94

Table 1: Running time on different models. |v| denotes the number
of vertices in millions of input point cloud.
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(b) The RMS approximation error and the Hausdorff approximation error for the reconstructions of four point sets: Bimba, Sheep, Chinese dragon and Grog.

Figure 8: The accuracy illustration. The running time: Bimba(|v| = 0.50, PR: 62.20s, SSD: 35.04s, SPR: 73.15s, GR: 42.31s), Sheep(|v| =
0.16, PR: 31.66s, SSD: 22.38s, SPR: 24.99s, GR: 18.60s), Chinese dragon(|v| = 0.66, PR: 109.43s, SSD: 44.28s, SPR: 96.02s, GR: 77.89s),
Grog(|v| = 0.88, PR: 178.68s, SSD: 59.44s, SPR: 133.68s, GR: 127.23s). The number of samples is in millions.

4.4 Reconstruction of details406

Finally, we show two more reconstructions to demonstrate that our407

Gauss method can reconstruct very detailed features. We set the408

maximum depth D = 11 to recover small features. Figure 12409

shows the reconstruction result of the Raptor model and Figure 13410

shows the reconstruction result of the Statuette model. As we can411

see, comparing to the ground truth, our Gauss reconstruction can412

reconstruct very detailed features.413

5 Conclusions414

We have presented a surface reconstruction method called Gauss415

reconstruction where the indicator function is estimated directly416

based on Gauss lemma without solving any linear system. This417

direct approach makes our Gauss reconstruction simple, accurate,418

and easy to parallel and therefore very efficient. In the future, we419

will consider the GPU implementation of FMM to further speed up420

the algorithm. In addition, we plan to study the theoretical prop-421

erty of Gauss reconstruction, in particular to analyze both position422

approximation error and normal approximation error.423
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Figure 9: Results from the reconstruction benchmark.
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Figure 10: Reconstructed surface of Armadillo from the samples perturbed by Gaussian noise of different variance. The variance is relative to
the diameter of the bounding box.
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